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Fig. 1. The dual-particle approach is able to reduce the tensile instability of SPH fluids for well simulating free-surface flows with rich thin detailed features.

Left: A high viscous fluid stretches under gravity; Middle: A cup falls onto the ground with water spurting out of the cup; Right: Fluid particles spilled onto

the gargoyle, producing a lot of thin features under a tensile stress state.

Tensile instability is one of the major obstacles to particle methods in fluid

simulation, which would cause particles to clump in pairs under tension

and prevent fluid simulation to generate small-scale thin features. To ad-

dress this issue, previous particle methods either use a background pressure

or a finite difference scheme to alleviate the particle clustering artifacts, yet

still fail to produce small-scale thin features in free-surface flows. In this

article, we propose a dual-particle approach for simulating incompressible

fluids. Our approach involves incorporating supplementary virtual parti-

cles designed to capture and store particle pressures. These pressure sam-

ples undergo systematic redistribution at each time step, grounded in the

initial positions of the fluid particles. By doing so, we effectively reduce
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tensile instability in standard SPH by narrowing down the unstable regions

for particles experiencing tensile stress. As a result, we can accurately sim-

ulate free-surface flows with rich small-scale thin features, such as droplets,

streamlines, and sheets, as demonstrated by experimental results.
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1 INTRODUCTION

Since smoothed particle hydrodynamics (SPH) was first pro-

posed by Gingold, Lucy, and Monaghan in 1970s [Gingold and

Monaghan 1977; Lucy 1977], the tensile instability issue has be-

come one of the major obstacles to prevent the use of SPH in

practical applications. Without addressing the tensile instability,

particles may tend to clump in pairs under attractive interparti-

cle forces. As a result, traditional incompressible SPH solvers typ-

ically fail to produce small-scale thin features (e.g., water stream-

lets and sheets), especially for free-surface flows where particles

near the free-surface boundary mainly endure attractive interpar-

ticle forces. To reduce tensile instability in fluid simulation, two

strategies are commonly used in computer graphics. One is to use

a background pressure to avoid the occurrence of attractive inter-

particle pressure forces, and the other is to use a scheme similar to

the finite difference method to discretize the pressure gradient.

Within the first strategy, a positive background pressure is

typically introduced to provide repulsive forces in pairs to
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regularize the particle distribution. However, several drawbacks

prevent its use. Firstly, excessive numerical dissipation can arise

from the background pressure, and redundant repulsive pres-

sure forces may destroy the small-scale thin features of SPH flu-

ids [Chalk et al. 2020; He et al. 2014; Vacondio et al. 2021]. Secondly,

it cannot be applied in the context of projection-based methods to

simulate free-surface flows where a zero-pressure boundary con-

dition is typically imposed at the liquid interface [Colagrossi et al.

2009].

With regard to the second strategy, a variety of different meth-

ods have been developed. For example, a Taylor-series consistent

pressure gradient model was used in the MPS method [Khayyer

and Gotoh 2011] to stabilize the simulation for regions in presence

of attractive interparticle forces. Similar ideas have also been in-

troduced in the context of the SPH method for computer graph-

ics [He et al. 2012b, 2020]. Nevertheless, the stability of the sim-

ulation performed by pressure gradient models are generally not

guaranteed if no additional dynamic stabilization (DS) [Mack-

lin and Müller 2013; Tsuruta et al. 2013] schemes are used. Besides,

the effectiveness of using pressure gradient models to remove the

particle clamping artifact is influenced by a large number of other

factors including kernel normalization [He et al. 2020], boundary

conditions [Yang et al. 2016], and so on. However, none of those

previous methods have touched the essence of the tensile instabil-

ity problem.

Back to the nature of tensile instability, its occurrence is believed

to be arising from the mismatch between the stress state and the

kernel function [Swegle et al. 1995]. Belytschko and Xiao [2002]

showed that the tensile instability can be completely removed

when the particle kernel is defined as a function of the material (La-

grangian) coordinates. While fully Lagrangian kernels are impos-

sible to define in the case of large deformation problems, the occur-

rence of tensile instability can be attributed to an error in particle

approximation when using Eulerian kernels instead of Lagrangian

kernels [Belytschko and Xiao 2002]. The question is: how can we re-

duce the error in particle approximation when using Eulerian kernels

since it is not possible to be completely removed? We propose a dual-

particle framework to address tensile instability in fluid simulation.

Aside from original fluid particles, which carry the particle masses

and velocities, we introduce additional “stress points” to carry the

particle pressures. In the following discussion, we call the original

fluid particles as real particles while the generated “stress points”

as virtual particles for simplicity. With virtual particles gener-

ated, the Navier-Stokes equation is then discretized with Eulerian

kernels defined on both real and virtual particles. Since generating

virtual particles follows a custom rule, it allows us to obtain a regu-

lar enough distribution of virtual particles, and effectively reduces

tensile instability in standard SPH by narrowing down the unstable

regions of Eulerian kernels under a tensile stress state. Compared

with other particle based approaches, our dual-particle approach

is easy to implement, yet can capture rich thin features of fluids

without requiring us to clamp negative pressures to zero. Besides,

although our method shares similarities with the hybrid particle-

grid (HPG) method [Fei et al. 2021], the methodology employed in

this study relies exclusively on SPH discretization [Koschier et al.

2019], imparting distinct characteristics that differentiate it from

the HPG method, as elucidated in Section 6.3.

In summary, we have made the following contributions:

— A dual-particle approach to address the tensile instability in

fluid simulation.

— A reformulation of the SPH approximate projection method

based on our dual-particle framework, in which the velocity

and pressure fields can be defined at different locations.

— A spatially-adaptive strategy to generate virtual particles

from real ones in parallel, where the regularity and compact-

ness for the particle distribution are guaranteed.

The outline of this article is as follows. Section 3 first gives a

brief introduction of the tensile instability issue followed by our

motivation to address the problem. Section 4 demonstrates the nu-

merical implementation of our dual-particle approach in solving

incompressible free-surface flows. Section 5 illustrates three typi-

cal strategies to generate virtual particles. The remaining sections

provide a variety of evaluations and examples to show the superi-

ority of our dual-particle approach over previous methods in terms

of suppressing tensile instability and enriching small-scale thin fea-

tures of SPH fluids.

2 RELATED WORK

In this section, we first summarize previous works on SPH meth-

ods that deal with the tensile instability. Then, we present a brief

introduction to the HPG methods due to the similarities to our

dual-particle approach.

2.1 The Tensile Instability in the SPH Methods

SPH was first invented by Gingold, Monaghan and Lucy to sim-

ulate interstellar flows [Gingold and Monaghan 1977; Lucy 1977],

and introduced into the computer graphics community by Desbrun

and Cani in 1996 [Desbrun and Gascuel 1996]. After this, numerous

studies have focused on using SPH to model free surface flows in

computer graphics [Ihmsen et al. 2014b; Koschier et al. 2019, 2022],

To remove the severe time step restrictions of the original SPH

method [Becker and Teschner 2007; Müller et al. 2003], researchers

propose to either use iterative predictive-corrective schemes to en-

force a constant density [He et al. 2012a; Solenthaler and Pajarola

2009] or projection-based methods to enforce a divergence-free ve-

locity [Bender and Koschier 2015; Ihmsen et al. 2014a; Takahashi

et al. 2018]. To accelerate the convergence rate of the pressure

solver, a projection method based on an Eulerian grid is introduced

into SPH [Raveendran et al. 2011].

Tensile Instability. Long-term viability poses a significant

challenge for SPH due to the persistent issue of tensile instabil-

ity [Vacondio et al. 2021]. As studied in Swegel et al. [1995], the

tensile instability is largely attributed to the conflict between the

stress state and the second order derivative of the kernel function.

Without the tensile instability being addressed, particles will tend

to clump due to attractive interparticle pressure forces. To reduce

tensile instability, many approaches have been proposed in recent

decades. In the computer graphics community, the most commonly

used way is to avoid inter-particle attractive forces, e.g., clamping

the negative pressure to zero or to use an artificial background

pressure [Bender and Koschier 2015; Ihmsen et al. 2014a; Mack-

lin and Müller 2013; Schechter and Bridson 2012; Si et al. 2018].

Unfortunately, small-scale fluid details can also be removed due
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to the absence of negative pressures. In engineering, the “tension

instability control” (TIC) approach is used to control the value of

background pressure [Lyu et al. 2021; Sun et al. 2018, 2017]. How-

ever, this may introduce other instability issues, such as particle

oscillation, that require us to apply a “stabilizer” to stabilize the

simulation [Xu et al. 2009]. Another way to deal with tensile in-

stability is by using the gradient correction scheme, which was

first invented by Khayyer and Gotoh [2011] and introduced to the

computer graphics community by He et al. [2012b; 2020]. More-

over, the incorporation of pressure gradient estimation, address-

ing non-momentum conservation as proposed by Sun et al. [2018],

proves advantageous for enhancing the tensile stability of the par-

ticle method. However, without completely removing the coloca-

tional nature of standard SPH, its effectiveness in reducing ten-

sile instability is less persuasive (see Figure 10). According to the

discussion in Belytschko and Xiao [2002], the tensile instability

is a kind of numerical error introduced by particle approximation

equipped with Eulerian kernels. Therefore, a totally Lagrangian

formalism (named as TLSPH) [Belytschko and Xiao 2002; Sun et al.

2021; Zhan et al. 2019] that uses a kernel function of material co-

ordinates is considered to be another effective way to avoid ten-

sile instability. However, these fully Lagrangian methods are dif-

ficult to model fluids due to their complex motions. Zero-energy

mode. Researchers are also aware when all field variables as well

as their derivatives are defined at the same locations in the SPH

method, the zero-energy mode is another numerical issue that ag-

gravates the tensile instability. Therefore, additional stress points

are introduced to enhance the numerical stability by removing

the colocational nature in SPH [Chalk et al. 2020; Randles and

Libersky 2000]. However, most previous SPH methods based on

stress points can only be used to model material with small defor-

mations since stress points and velocity particles need to remain

interleaved.

Small-scale features. Instead of addressing the tensile insta-

bility directly, some works aim at enhancing the visual quality of

small-scale features of the fluid with other strategies. To correct

the density estimates at the free surface, Schechter et al. [2012] sug-

gested to create ghost particles around the fluid surface; To avoid

numerical instability on thin features of fluids, He et al. [2014]

proposed to estimate the pressure at two scales and introduced

the anisotropic kernel to filter the pressure force. Furthermore, a

number of surface tension algorithms have been developed [Akinci

et al. 2013; He et al. 2014; Yang et al. 2017a, b], which can minimize

fluid surface area and model the splashes of fluids. However, with-

out the underlying tensile instability being addressed, these tech-

niques have limited improvements on modeling the small-scaled

thin features in fluids.

2.2 Hybrid Particle-Grid Methods

While pressure projection is preferred to be done on an Eulerian

grid [Batty et al. 2007; Chen et al. 2020b; Larionov et al. 2017]

and material tracking on Lagrangian particles [Chen et al. 2020a;

Gissler et al. 2019], early studies on the HPG methods aim to attain

both the benefits by using a hybrid strategy [Harlow 1962; Har-

low and Welch 1965]. Since the standard PIC suffers from signifi-

cant dissipation due to a direct interpolation between particles and

grids, Brackbill et al. [1986] proposed the Fluid-Implicit-Particle

(FLIP), whose idea is to only transfer velocity changes from the

grid to particles. In 1996, the HPG method was first introduced to

computer graphics to simulate fluids [Foster and Metaxas 1996].

Recently, Jiang et al. [2015] proposed APIC, which replaces the lo-

cal velocity field of particles with an affine velocity field to preserve

rotational and shearing motions. Fu et al. [2017] further extended

their work and presented the Poly-PIC method to better preserve

the energy and vorticity. Hu et al. [2018] introduced a generalized

form of the APIC and Poly-PIC methods by using a Galerkin-style

Moving Least Squares (MLS) discretization. Nakashi et al. [2020]

proposed a new PIC-like solver by integrating RBF-FD (Radial Ba-

sis Function-Finite-Difference), which gives a higher-order scheme

for velocity transfer between the grid and particles. Fei et al. [2021]

proposed a new integration scheme that can effectively reduce dif-

fusion and dissipation of interpolations.

In terms of enhancing the splashing quality of fluids, Ando

proposed a method to effectively improve the stability of small-

scale details by increasing the particle resolution in the splash-

ing area. Ando et al. [2012]. Nonetheless, the present challenge

lies in the complexity of parallelizing the adaptive particle res-

olution strategy on GPUs to attain superior computational effi-

ciency. Gerszewski and Bargteil [2013] introduced the mass-full

FLIP method, which integrates unilateral incompressibility to sim-

ulate large fluid splashes. However, they observed that simulating

fluid thin sheets presents a challenge for their method.

Generally speaking, the HPG methods should have the bene-

fits of both Eulerian and Lagrangian methods. However, compared

with a fully Lagrangian method, the HPG methods typically ap-

pear to be more dissipative in simulating fluids [Fei et al. 2021].

Besides, it is also not quite easy to preserve the whole volume for

hybrid particle-grid methods. Therefore, Cornelis et al. [2014] pro-

posed to combine the Lagrangian IISPH [2014a] method and FLIP

method [1986] to better preserve the volume.

3 A DUAL-PARTICLE FRAMEWORK

In this section, we will present the basic theory for simulating in-

compressible SPH fluids, followed by our motivation to derive the

dual-particle approach.

3.1 Basic Theory

In an incompressible model, the governing equations for a free-

surface fluid can be written in a general form as follows

ρ
Dv

Dt
= −∇p + μ∇2v + f (1)

∇ · v = 0, (2)

where v is the velocity, p is the pressure, ρ is the density, μ is the

kinematic viscosity, and f is the external force. To enforce fluid

incompressibility, the prediction-correction scheme first takes an

integration to calculate the intermediate velocity v
∗ by only tak-

ing account of the viscous and gravitational terms. Then, a second

corrective step is taken to update the intermediate velocity with

the pressure term [Koschier et al. 2022]

vn+1 = v∗ −
Δt

ρ
∇p, (3)

where Δt is the time step size, and the new velocity vn+1 should

satisfy the divergence-free condition, i.e., ∇ · vn+1 = 0. By

ACM Trans. Graph., Vol. 43, No. 3, Article 28. Publication date: April 2024.



28:4 • S. Liu et al.

Fig. 2. Demonstration of the particle pressure distribution using the ap-

proximate projection method [Cummins and Rudman 1999] imposed with

a zero-pressure Dirichlet boundary condition on the free surface bound-

ary [Nair and Tomar 2014]. Particle pressures are visually represented

through color coding, with purple and red particles situated in the neg-

ative fluid region, while blue and green particles occupy the positive pres-

sure region. The particle count is 72k , the time step size is set to 0.001s ,

and the artificial viscosity model (XSPH) is implemented with a parameter

value of 0.05.

inserting Equation (3), the divergence-free condition can be ful-

filled by solving the following pressure Poisson equation (PPE)

∇ ·

(
1

ρ
∇p

)
=
∇ · v∗

Δt
. (4)

Assuming a zero-pressure Dirichlet boundary condition is imposed

on the free-surface boundary [Nair and Tomar 2014; Takahashi

et al. 2018; Yang et al. 2016], solving Equation (4) yields the pres-

sure field distribution across particles containing both positive and

negative values, as illustrated in Figure 2.

Citing various engineering studies [Lyu et al. 2021; Monaghan

2000; Sun et al. 2019; Zhang et al. 2017], it is well-established that

negative pressure induces the onset of tensile instability. More

specifically, as the fluid is under a tensile stress state, attrac-

tive forces originating from negative-pressure regions can lead to

anomalous particle clustering [Gotoh and Khayyer 2016; Zhang

et al. 2017], as illustrated in a snapshot at t = 0.05s in Figure 2.

Although it is easy for us to weaken the tensile instability by sim-

ply clamping all negative particle pressures to zero [Bender and

Koschier 2015; Ihmsen et al. 2014a], the error introduced near free

surface boundaries may destroy thin fluid features. Note the DF-

SPH solver [Bender and Koschier 2015] using the negative pressure

clamping scheme is unable to capture thin fluid sheets, as shown

in Figures 23 and 24. Therefore, the main purpose of this work

is to find a solution to alleviate the tensile instability in particle

methods, yet can still capture all small-scale thin features.

3.2 Motivation

Before giving our solution, let us first investigate how tensile in-

stability arises from a particle method. Intuitively, tensile instabil-

ity occurs in presence of attractive inter-particle forces when the

inter-particle interaction strength increases as the two particles ap-

proach [Khayyer and Gotoh 2011]. Assume a particle i is located in

the middle of two neighboring particles j and k in the right figure.

If particle i suffers from the tensile in-

stability problem, its balance can be

easily broken by slightly shifting its po-

sition to left or right because the par-

ticle that is closer can impose a larger

force to drive particle i further apart. Figure 3 depicts the insta-

bility issue discussed previously in one-dimensional space. Please

Fig. 3. The scenario involves the demonstration of three particles expe-

riencing tensile stress. Particle j and k move apart at a small initial ve-

locity (0.05m/s ), while particle i , initially at rest, is positioned asymmetri-

cally between particles j and k . Notably, only incompressibility solvers are

utilized, while artificial viscosity or alternative solvers are not employed.

Our approach employs the dual-particle method with a spatially adaptive

strategy (S.C.). The PBF method [Macklin and Müller 2013] does not in-

corporate adsorption in our implementation. The ISPH method [Nair and

Tomar 2014] maintains negative pressures. The DFSPH method [Bender

and Koschier 2015] incorporates a negative-pressure clamping scheme. Ad-

ditionally, the VSSPH [He et al. 2020] extends the “staggered-particle” SPH

method introduced by He et al. [2012b].

Fig. 4. Inter-particle distance of the three-particles scenario (Figure 3). (a)

The distance between particle i and j (di j ); (b) The distance between par-

ticle i and k (dik ); (c) The difference between dik and di j .

observe the distributions of all three particles and the curves rep-

resenting inter-particle distances plotted in Figure 4. In the PBF

method [Macklin and Müller 2013], the attractive inter-particle

force is disabled, therefore particle i remains stationary. The

ISPH [Nair and Tomar 2014], VSSPH [He et al. 2020] and DF-

SPH [Bender and Koschier 2015] all preserve attractive inter-

particle force. However, particle i fails to remain stable due to a

larger attractive force from the left neighboring particle. This kind

of instability can lead to the formation of voids and particle clus-

tering on thin fluid sheets.

Within the pairwise-force model, Swegle et al. [1995] has theo-

retically demonstrated a sufficient condition to avoid tensile insta-

bility. For an incompressible fluid solver, the sufficient condition is

formulated as

pW ′′ > 0, (5)

whereW ′′ is the second derivative of the SPH kernel function. No-

tice when a particle is under a tensile stress state, i.e., p < 0, its

motion can remain stable only when the condition W ′′ < 0 is
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satisfied. Please refer to Figure 5 for a demonstration of a cubic

spline kernel function with the unstable regime W ′′ ≥ 0 plot-

ted . To simplify the following discussion, we only consider a one

dimensional problem with an equally-spaced distribution. With-

out loss of generality, we assume all fluid particles have the same

types of physical quantities and their movements are only affected

by attractive pressure forces. In a standard SPH method, both the

particle pressure and velocity are defined at the same locations as

shown in Figure 5(a). As a result, if particle i is exactly located in

the middle of its two neighboring particles, it will stay static due

to a zero net force. However, if particle i deviates from its origi-

nal position slightly to the left, the pressure force fj exerted by

particle j becomes larger than the pressure force fk exerted by par-

ticle k . This indicates particle i’s movement can erroneously be

accelerated due to the tensile instability, causing pairwise clump-

ing between particle i and j. From Figure 5(a), it can also be noticed

particle i is just located inside the unstable region, indicating par-

ticle i may suffer from tensile instability no matter how it moves

between particle j and k .

To address the above problem, one simple way is to increase

the smoothing length h to guarantee particle i is located inside the

stable region. However, if the smoothing length is too large, the de-

tails and accuracies of the fluid may be smoothed out as well [Liu

and Liu 2010]. More importantly, a larger smoothing length re-

quires a much higher demand for both the computational and

storage costs. Motivated by the stress points used in soil mechan-

ics [Chalk et al. 2020; Randles and Libersky 2000], we introduce

additional virtual particles (J and K ) to store particle pressures, as

demonstrated in Figure 5(b). The pressure forces exerted on parti-

cle i are now calculated with its two neighboring virtual particles

(J and K ). It can be noticed that particle i is now located inside the

stable region of kernel functions defined on virtual particles. As a

result, when particle i moves slightly from its original to the left,

the pressure force fJ exerted by the left virtual particle becomes

smaller than the pressure force fK exerted by the left virtual parti-

cle, thus helps slow down the particle clumping trend. Besides, it

can be noticed tensile instability can mostly be avoided when parti-

cle i moves between its two neighboring virtual particles by choos-

ing an appropriate kernel function. Finally, the removal of the

colocational nature of standard SPH helps completely remove the

first-order sawtooth mode (typically known as the zero-energy

mode [Dyka and Ingel 1995]) which could grow under the ten-

sile instability. As shown in Figures 3 and 4, the method introduc-

ing additional virtual particles ensures the particles remain well-

distributed during the stretching process, which is crucial for fluid

simulation to capture streamlines and thin sheets. Based on the

above motivation, we will give more details on how to setup our

dual-particle approach in the following context.

3.3 Dual-Particle Discretization

Our dual-particle framework uses two different kinds of particles

to carry field variables. The real particles carry particles’ original

mass, velocity, and so on. Virtual particles are regenerated at the

beginning of each time step to carry particles’ pressure and their

locations will be updated in the next time step to stay close to the

real ones. In the following discussion, we use lowercase letters i, j

Fig. 5. Demonstration of tensile instability in a standard SPH and our

dual-particle method. Assume the particle is under a tensile stress state,

i.e., pi < 0. The solid curves and the dashed curves respectively repre-

sent the first-order and second-order derivative of the cubic spline kernel

W [Koschier et al. 2019]. The unstable regions are plotted for the cubic

spline kernel. Notice (a) in the original SPH method, particle i is always

in the unstable region because of its colocational nature. (b) Our motiva-

tion is to reduce the size of unstable regions for particles under a tensile

stress state by introducing additional pressure calculation points, i.e., vir-

tual particles J and K .

to denote field variables defined on real particles while uppercase

letters I , J for field variables defined on virtual particles. By taking

the summation approximation based on our dual-particle model,

and introducing the discretization of the SPH method [Monaghan

1992], a physical quantity q can be computed with four different

formulae as follows

qi =
∑

j

Vj

[
qj

]
W

(
xi − xj ,h

)
q̂i =

∑
J

VJ

[
q J

]
W

(
xi − xJ ,H

)
qI =

∑
j

Vj

[
qj

]
W

(
xI − xj ,h

)
q̂I =

∑
J

VJ

[
q J

]
W

(
xI − xJ ,H

)
, (6)

where the hat is used to denote quantities that are calculated by

taking contributions from the neighboring virtual particles J ,W is

the SPH kernel function, h andH are the smoothing lengths of real

and virtual particles, andV is the particle volume. As suggested by

Koschier et al. [2019], the volume of real particle is directly calcu-

lated as

Vi =
mi

ρi
, where ρi =

∑
j

Vj

[
ρ j

]
Wi j =

∑
j

mjWi j . (7)
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Fig. 6. An overview of our dual-particle method. In our dual-particle approach, the velocity and pressure gradients are defined on real particles, while

the pressure, velocity divergence and pressure Laplacian are calculated on virtual particles. (a)~(b) Virtual particles are generated from real particles; (c1)

Discretize the divergence operator on virtual particles with respect to real particle; (c2) Discretize the Laplacian operator on virtual particles with respect to

virtual particles, and solve the PPE; (d) Calculate pressure gradients on real particles with respect to virtual particles; and (e) Update real particles’ velocities.

Since virtual particles lack the mass property, we cannot use the

above equation to compute its volume. To guarantee a smooth tran-

sition and ensure the stability of the simulation, Equation (6) is

applied to calculate the volume for virtual particles as follows

VI =
∑

j

Vj

[
Vj

]
W

(
xI j ,h

)
=
∑

j

Vj
2W

(
xI j ,h

)
, (8)

where xi J denotes xi − xJ . It can be found that when a virtual

particle moves far away from the boundary, its volume will be de-

creasing to zero.

3.4 Our Algorithm

By combining the dual-particle discretization into an approximate

SPH projection method [Cummins and Rudman 1999], the full pro-

cedure to simulate incompressible fluids can be outlined as follows:

(1) Generate virtual particles according to the description in

Section 5.

(2) Compute particles’ volumes using Equations (7) and (8) .

(3) Discretize the PPE using Equation (11) and (14), then im-

pose the free-surface boundary condition by updating the

diagonal elements of the coefficient matrix (see details in

Section 4.2).

(4) Solve the linear system of equations using a conjugate gra-

dient method.

(5) Calculate the pressure force for real particles according to

Equation (16).

(6) Update velocities and positions for real particles and delete

virtual particles.

Please also refer to Figure 6 for a more intuitive illustration and

the pseudocode in Algorithm 1 for a detailed description.

4 DUAL-PARTICLE APPROXIMATE PROJECTION

In this section, we will discuss how to enforce fluid incompress-

ibility using an approximate projection within our dual-particle

model.

4.1 The Pressure Poisson Equation

To discretize the PPE, a variety of different strategies are actually

available for both the Laplacian and divergence operators in SPH

community [Fürstenau et al. 2017]. Since our main purpose is to

verify the effectiveness of using our dual-particle model to remove

tensile instability, we choose to implement the most commonly

used approximate projection method introduced by Cummins and

Rudman [1999]. With an incompressibility assumption, i.e., ρ = ρ0,

the pressure Laplacian (i.e., the left hand of the Equation (4)) can

be defined on virtual particles as follows

L̂I (p) =
2

ρ0

∑
J

VJ
pI − p J

rI J + η
W ′I J , (9)

where VJ is the virtual particle volume with J denoting all neigh-

boring virtual particles, rI J =
		xI − xJ

		, η is a small constant to

prevent being divided by zero, and W ′I J =
∂W (xI J ,H )

∂rI J
. In a simi-

lar way, the source term in Equation (4) can be defined on virtual

particles as follows

DI (v
∗) = −

1

Δt

∑
j

Vj v
∗
j · ∇IWI j , (10)

whereVj is the real particle volume with j denoting all neighboring

real particles and ∇IWI j =
xI j

rI j
W ′

I j
. With the above two discretiza-

tions, a linear system of equations can then be formulated to solve

for the unknown pressure field.

However, the stable solve of the linear system of equations for

arbitrary particle configurations requires us to first address the two

following numerical issues.

Particle deficiency. The form of Equation (10) may suffer large

errors near the free surface boundary due to the boundary defi-

ciency. To address this problem, Equation (10) is modified as fol-

lows [Koschier et al. 2019]:

DI (v
∗) = −

1

Δt

∑
j

Vj (v
∗
j − v̄

∗
I ) · ∇IWI j , (11)

where v̄
∗
I

represents the intermediate virtual particle velocity

mainly used to reduce boundary errors. Since the virtual particle I
does not store the velocity quantity in our dual-particle approach,

we introduce the corrective smoothed particle method [Chen and

Beraun 2000] to estimate the fluid velocity at the virtual particle
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position:

v̄
∗
I =

∑
j Vj v

∗
jWI j∑

j VjWI j
. (12)

Note the intermediate virtual particle velocity v̄
∗
I

can be viewed

as an weighted interpolation calculated from neighboring real

particles.

Density drifting. The particle density drifting problem should

be addressed to avoid permanent volume loss. A typical solution

is to add a compensation term to the source term of the pres-

sure Poisson equation [Khayyer and Gotoh 2011]. Since the pres-

sure Poisson equation is solved on virtual particles within our

dual-particle method, we should first calculate the virtual parti-

cle density ρI =
∑

j mjWI j , and then add the following term to

Equation (10)

ΛI = κ
max(ρI − ρ0, 0)

ρ0Δt
, (13)

where κ represents a constant to control the value. In practice, κ is

typically chosen to be of the same order of magnitude as m/ρ0 to

ensure stability. Combining both Equations (11) and (13), the final

source term is formulated as DI (v
∗)new = DI (v

∗) + ΛI .

4.2 Boundary Handling

For a projection-based incompressible fluid solver, both free-

surface and solid boundary conditions should be appropriately in-

corporated. In the following discussion, we will show how to han-

dle both boundaries within our dual-particle framework.

Free-surface boundary condition. For particles near the free-

surface boundary, only particles inside the boundary contribute to

the summation integration in Equation (6) since there are no parti-

cles outside the boundary. Within a projection method, a zero pres-

sure boundary condition should be imposed to guarantee the dis-

cretized pressure Poisson (Equation (4)) obtain a positive-definite

coefficient matrix [Bridson 2015]. A common practice is to ex-

plicitly identify boundary particles near the free-surface bound-

ary, and assign zero pressures on those particles [Takahashi et al.

2018]. Unfortunately, identifying boundary particles explicitly will

make the pressure projection sensitive to the particle distribution

because the zero-pressure boundary condition is imposed on par-

ticles rather than on a smooth transition region. Therefore, a semi-

analytical method was proposed to impose free-surface bound-

ary conditions implicitly [Nair and Tomar 2014; Yang et al. 2016],

which shows significant improvement on the convergence speed

and stability in solving the PPE.

Motivated by their work, we will extend the semi-analytical

method and make it better suited to our dual-particle framework.

Unlike [Nair and Tomar 2014], virtual particles can be located out-

side of the free surface boundary. However, as the virtual particle

travels far away from the free surface boundary, its volume will be

small as well according to Equation (8). Therefore, the Laplacian

operator of the PPE (Equation (4)) can be uniformly discretized as

L̂I (p) =
2

ρ0

∑
J

VJpI
W ′I J

rI J + η
−

2

ρ0

∑
J

VJp J
W ′I J

rI J + η

= α̂IpI −
∑

J

α̂I Jp J ,
(14)

Fig. 7. Illustration of the free-surface boundary condition. A semi-

analytical scheme is applied to impose the free-surface boundary condi-

tion by setting α̂I = max(α̂I , α0), where α0 is precalculated at the begin-

ning of simulation for a prototype virtual particle filled with full neighbor-

ing real and virtual particles. Note (a) when a virtual particle is located

inside a fluid and far away from the boundary, the summation of αI J

could be larger than α̂0 due to compression and we will not clamp its value;

(b) Otherwise, if a virtual particle I is near the free-surface, the value of∑
J αI J is typically smaller than α0, and we will clump its value to α0.

for all virtual particles, where α̂I and α̂I J are defined as

α̂I =
∑

J

α̂I J , α̂I J =
2

ρ0

VJW
′
I J

rI J + η
. (15)

Note αI represents the diagonal elements of the coefficient ma-

trix of the discretized PPE, and αI J represents the off-diagonal ele-

ments. According to Equation (8), the virtual particle volumeVJ is

smoothly decreasing across the free surface boundary. Therefore,

we identify a virtual particle as a boundary particle only if its co-

efficient αI is smaller than a predefined threshold α0, as shown

in Figure 7. In our implementation, α0 is precalculated at the be-

ginning of simulation for a prototype virtual particle filled with

full neighboring real and virtual particles. The coefficient αI is

clumped to α0 for all boundary particles when we solve the linear

system of equations, i.e., α̂I = max(α̂I ,α0). This operation can en-

sure the coefficient matrix is weakly diagonally dominant, the dis-

cretized PPE, therefore, can be efficiently solved with a standard

iterative solver. Compared with a zero pressure boundary condi-

tion imposed on particles, the implicit strategy to only update the

diagonal elements of the coefficient matrix for boundary particles

makes it possible to impose a smooth zero pressure condition on

the free-surface boundary. As a result, the motion of real particles

is guaranteed to be smooth, and will not suffer from the stair-step

artifacts introduced by virtual particles.

Solid boundary condition. We impose solid boundary con-

ditions with standard ghost particles [Akinci et al. 2012; Bridson

2015; Takahashi et al. 2018]. As shown in Figure 8, ghost solid par-

ticles are evenly sampled in the solid region and assigned with the

same mass as real fluid particles. The ghost solid particles carry

velocities of solid materials, and they are also considered as real

particles to calculate the velocity divergence of the virtual particle

(Equation (11)).

4.3 Velocity Update

After the PPE is solved, the pressure field defined on virtual par-

ticles is used to update the velocity of real particles. Following a

standard particle approximation, the pressure gradient defined on
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Fig. 8. Illustration of the solid boundary condition.

real particles can be calculated as

Gi (p) =
∑

J

VJp J∇iWi J . (16)

To simulate the interaction with solid boundaries, Equation (16)

needs to be corrected by the solid particles as well, i.e.,

Gi (p)
new = Gi (p)

old +
∑
js

V s
j Projnjs (vi − vjs )Wi js , (17)

where the njs is the normal vector of the solid boundary at the

position of the solid particle js , Projnjs (vi − vjs ) represents the

projection of vi −vjs on vector njs [He et al. 2020]. As a result, the

real particle velocities can be updated as follows

vn+1
i = v∗i −

Δt

ρ0
Gnew

i (p) , (18)

In general, particle methods prefer a regular distribution of par-

ticles to obtain simulations with high stability and accuracy [Fries

and Belytschko 2008]. The same situation comes up with the distri-

bution of virtual particles. To evaluate how the distribution of vir-

tual particles affect the stability of fluid simulation, we introduce

three different strategies to generate virtual particles, as demon-

strated in Figure 9. The following contains our principle for each

strategy as well as the implementation details.

5 VIRTUAL PARTICLE GENERATION

S.A. Colocational strategy. Virtual and real particles share the

same locations.

— Principle and Implementation: To be comparable to a

standard SPH projection method where both velocity and

pressure are defined at the same locations [Cummins and

Rudman 1999; Takahashi et al. 2018; Yang et al. 2016], this

strategy is to simply assign real particles’ position to the

virtual particles and set H = h. By referring to Algorithm 1,

it can be noticed that the dual-particle approximate projec-

tion with this strategy degenerates to the original approx-

imate projection method (i.e., ISPH method) proposed by

Cummins and Rudman [1999].

S.B. Particle shifting strategy. Virtual particles are generated

by shifting the positions of real particles, and the distribution of

virtual particles is slightly more uniform than that of real particles.

— Principle and Implementation: Before giving our final

strategy to generate an ideal uniform distribution of virtual

particles, we try with a strategy, where virtual particles are

less well-distributed, to demonstrate how the distribution of

virtual particles affect the simulation results. We first gener-

ate a replica of real particles and assign their positions to

Fig. 9. Illustration of the three different virtual particle generation

strategies.

virtual particles as S.A. does, and then use the position-

based fluid (PBF) method [Macklin and Müller 2013] to

slightly shift virtual particles’ positions without updating

the particle velocities. During this process, all other terms

including particle inertia, viscosity and external forces are

neglected, ensuring that the distribution of virtual particles

is more evenly distributed and matches real particles well.

S.C. Spatially adaptive strategy. Virtual particles are generated

to have a spatially adaptive uniform distribution. Unlike the first

two strategies, the virtual number in this strategy is dynamic.

— Principle and Implementation: In this strategy, our pur-

pose is to generate an ideal uniform distribution of virtual

particles. Besides, to reduce memory consumption, the cov-

erage of virtual particles should be compact. To obtain a

well-distributed yet compact distribution of virtual particles,

our solution is to generate virtual particles at equal-spaced

and orthometric fixed points around real particles.

In fact, there exist other strategies to generate virtual particles

in the dual particle framework. Nevertheless, we believe the above

mentioned three strategies are enough to demonstrate the effec-

tiveness of using virtual particles in suppressing the tensile insta-

bility. Since it is straightforward to implement the first two strate-

gies, we only give more details in the next section to show how

to implement the spatially adaptive strategy (S.C) on GPU to get a

high performance simulation.

5.1 Spatially Adaptive Virtual Particle Generation

While other sparse data structures, such as OpenVDB [Gao et al.

2018; Museth 2021; Museth et al. 2013; Wang et al. 2020], should

work with our dual-particle method, we prefer a GPU-friendly way

to generate spatially adaptive virtual particles to make the whole

simulation compatible with modern GPUs.

As shown in Figure 11, the full procedure is outlined as follows

(1) Update the positions of real particles and delete old virtual

particles generated at the previous timestep.

(2) For each real particle, generate candidate points within the

support domain of the real particle. The candidate point is

always initialized at cell vertices of a uniform Eulerian grid.
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Fig. 10. Rotating square fluid patch. The smoothing length of all particles are 0.0125m, initial angular velocities are 2π
3 r ad · s−1, and an artificial viscosity

of 0.03 [Schechter and Bridson 2012] is applied. The particle spacing for (a) and (b) is 0.0075m and 0.005m respectively, and the (real) particle number

is 1.02k and 2.3k respectively. In the scenarios, three other methods are implemented for comparison, including the PBF [Macklin and Müller 2013], the

divergence free SPH (DFSPH) [Bender and Koschier 2015] and the variational staggered SPH [He et al. 2020] (which can be viewed as an extension to the

staggered particle method [He et al. 2012b]).

Fig. 11. An overview of our parallel implementation of the spatially adap-

tive strategy (S.C.) to generate virtual particles.

(3) Calculate the Morton codes for all candidate points.

(4) Sort in parallel the candidate points according to their Mor-

ton codes.

(5) Remove duplicative candidate points by comparing their

Morton codes.

(6) Allocate a new buffer to store all unique virtual particles.

Notice implementation of all steps in the above procedure can be

fully parallelized on the GPU.

6 EVALUATIONS AND DISCUSSIONS

In this section, we first provide a stability analysis using our dual-

particle approach in simulating incompressible fluids. Then, we

compare our method to both the hybrid particle-grid method and

the stress-particle SPH method to demonstrate the similarities and

differences between these methods.

6.1 Stability Analysis

To assess the efficacy of our dual-particle approach in mitigating

the tensile instability issue, we initially simulated the rotational de-

formation of a square fluid patch, depicted in Figure 10, which has

been widely recognized in engineering as a classical measure for

evaluating the tensile stability [Colagrossi 2005; Khayyer and Go-

toh 2011; Liu et al. 2018; Sun et al. 2017; Tsuruta et al. 2013]. In this

zero-gravity scenario, the square fluid patch is initially subjected

to a rigid-rotation velocity field defined as{
u0 = ω(y − yc )

v0 = −ω(x − xc )
, (19)

where (xc ,yc ) is the center of the fluid patch, ω is the angu-

lar velocity, and the divergence free condition for the velocity

field is fulfilled, i.e., ∇ · v0 = 0. In the evaluation process, the

square fluid patch experiences a centrifugal force resulting from

a significant negative pressure field. Consequently, it undergoes

a gradual transformation into a compact shape with four arms

[Colagrossi 2005; Sun et al. 2017]. We modeled this experiment

using the same smoothing length and two different particle resolu-

tions. Both comparisons show that most previous SPH methods in

computer graphics fail to suppress the tensile instability due to in-

sufficient attractive inter-particle forces under the same conditions.

Moreover, doubling the particle resolution does not effectively im-

prove the stability. This demonstrates that particle resolution is

not the key factor in improving tensile stability. Within our dual-

particle framework, the same kernel functions and free-surface

boundary conditions are used for all three different virtual parti-

cle generation strategies. Our methods using S.A. and S.B. show

improved performance in removing tensile instability compared

to other methods, yet particle clustering still can be observed. By

applying the S.C., our method is able to regenerate the correct be-

havior of the square fluid patch under rotation. Besides, the par-

ticle distribution also remains regular during the evolution of the

rotating fluid patch.

From the above comparison, progressive improvement of the

real particle distribution can be found as the virtual particle genera-

tion strategy changed from S.A., S.B. to S.C. Similar enhancements

are noticeable in the experiments depicted in Figures 16 and 24. It

appears that the sampling strategy of virtual particles is the key of

our dual particle approach to address tensile stability, indicating re-

moving the colocational nature and placing sufficient stress points

at uniform positions can substantially improve the tensile stability.

We will provide more evaluations in the following context.

It is important to note that the VSSPH method in Figure 10 also

introduces the “stress points” to discretize the PPE. However, un-

like our method, the VSSPH method does not explicitly generate

“stress points”, which means it cannot guarantee the uniform dis-

tribution of virtual particles and fails to narrow down the unstable

regions for particles under a tensile state. Consequently, it fails to

weaken the tensile instability.
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Fig. 12. The simulation involves rotating square fluid patches with vary-

ing virtual particle spacings and time steps. (a) Simulations using our S.C.

method with different virtual particle spacings, namely, 0.9δ x , 1.0δ x ,

1.1δ x , and 1.2δ x , where the real particle spacing δ x remains fixed at

0.005m, and the time step is set to 1ms . (b) Simulations using our S.C.

method with different time steps, specifically 0.5ms , 1.0ms , 2.0ms , and

4.0ms , while both virtual and real particle spacings are maintained at

0.005m.

Fig. 13. Illustration of averaged particle distribution measure Γ for vari-

ous simulations in Figures 10 and 12. (a) simulations conducted with our

method using different virtual particle generation strategies; (b) simula-

tions with varying virtual particle spacings; and (c) simulations with dif-

ferent time step sizes.

To elucidate the influence of virtual particle spacing and time-

step size on tensile instability, we conducted additional experi-

ments, as depicted in Figure 12. All experiments show no signif-

icant artifacts of particle aggregation. However, employing larger

time step sizes or virtual particle spacings could result in an

increased separation speed between real particles, causing chal-

lenges in maintaining accurate fluid shapes [Colagrossi 2005; Oger

et al. 2007]. To quantify the particle distribution in Figure 10, we

propose the following particle distribution measure for evaluating

the performance of various configurations

Γi = β0

(
ρ0 − ρi

ρ0

)2

+ β1

����
∑

jVj∇iWi j∑
j VjWi j

����
2

, (20)

where the constant coefficients β0 and β1 are set to 1.0 in our cur-

rent implementation. The first term assesses particle density, while

the second term evaluates the symmetry of the particle distribution

[He et al. 2014]. This combination helps quantify the quality of the

particle distribution. Figure 13 depicts the curve of measure Γi ap-

plied to Figures 10 and 12, illustrating that distinctions between

time step sizes of 0.5 ms and 1.0 ms, as well as virtual particle

spacings between 0.9δx and 1.0δx , are negligible. Larger time step

Fig. 14. 2D Dambreak. Our method with S.C. simulates the dam break

example in the 2D space. Real and virtual particles are rendered as black

and red points, respectively.

Fig. 15. Dam break. We simulate this example with four different virtual

particle spacing distances. From Left to right, the spacing distances of vir-

tual particles are set 1.0δ x, 1.2δ x, 1.4δ x and 1.6δ x , respectively, where

the spacing distances δ x is always set to 0.005m.

sizes or virtual particle spacings may degrade the quality of the

simulation.

2D Dambreak. To evaluate the stability of the free-surface

boundary condition, Figure 14 shows a 2D dam-break simulated

with our dual-particle method with S.C. Real and virtual particles

are rendered as black and red points, respectively. Notice when the

real particles move to cross the boundary of virtual particles, no

obvious artifacts or instabilities are observed, indicating the semi-

analytical free-surface boundary is stable within our method.

Different resolutions of virtual particles (Figure 15). Fig-

ure 15 further demonstrates the stability of using different resolu-

tions to generate spatially adaptive virtual particles. Notice similar

results can be produced for all four cases. In a practical implemen-

tation, we suggest using a spacing distance that is 1 to 2 times

of the spacing distance of real particles because too big a spacing

distance for virtual particles can smooth out fluid details. In the

following discussion, if not specified, the spacing distances of real

particles and virtual particles are both set to the same value, i.e.,

δx = 0.005m.

Inviscid vs. viscous fluids. Simulating fluids with zero vis-

cosity has been regarded as a long-standing challenge for parti-

cle methods. An artificial viscosity model (e.g., XSPH) is typically

used to smooth the velocity field in order to avoid unphysical oscil-

lations in the numerical results, thus making particles move more

coherently. To demonstrate whether our method is able to model

inviscid fluids, another dam break case is simulated, as shown in

Figure 16. Comparison in the top row shows all previous methods

as well as our dual-particle method using the first two virtual par-

ticle generation strategies cannot preserve coherent particle mo-

tions well in simulating an inviscid fluid. In contrast, our method

with S.C. shows best in preserving coherent particle motions. After

introducing artificial viscosity, all simulations demonstrate signif-

icant improvements. However, a comparison in the bottom row

shows our method with S.C. still produces the best simulation
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Fig. 16. Inviscid and viscous fluids. Each fluid block contains 237.3k particles. Splashes of the fluids usually occur in negative-pressure regions, which

can cause tensile instability. If computational efficiency is not considered, the top row shows our dual-particle method using S.C is the best approach

for simulating inviscid fluids since it preserves the coherence of particle motions. After introducing artificial viscosity (XSPH model with a parameter of

0.02), all simulations demonstrate significant improvements. However, the comparison in the bottom row shows our method with S.C still produces the

more stable thin-fluid sheets, indicating the tensile instability introduced by the fluid incompressibility solver cannot be addressed by simply introducing

artificial viscosity into particle fluids.

Fig. 17. Performance comparison. (a) Average iteration numbers of our

dual-particle approach using different time step sizes for the breaking dam

scenario in Figure 15; (b) Curve of the iteration number for a simulation

with a time step size of 0.001. The convergence criterion is set to 10−4 of

the maximum error for all simulations.

results, indicating the tensile instability introduced by the fluid in-

compressibility solver cannot be addressed by simply introducing

artificial viscosity into particle fluids.

It is important to note that our method using S.C. can cap-

ture more stable small-scale thin features, but this improvement

comes at a cost as the strategy may generate more virtual par-

ticles in modeling fluids. Our method using S.C. requires more

computing time and consumes more memory in neighborhood

lookup and pressure calculation processes. Table 1 shows the vir-

tual particle counts and time costs for the three strategies in

figure 16.

6.2 Performance Comparisons

We first present comparisons of our method with the three differ-

ent strategies to generate virtual particles. Figure 17(a) shows the

average computational cost per time step in solving the linear sys-

tem of equations remains nearly constant for all three sampling

strategies for a breaking dam with different time step sizes. In

addition, the comparison between the three strategies shows that,

despite slower convergence, S.C. can use a larger time step size

for simulation than the other two strategies. Figure 17(b) shows

the iteration number curve for a simulation with a timestep size

of 1ms , the comparison demonstrates that the S.B. has a faster con-

vergence speed.

To illustrate the efficacy of our method, we conducted simula-

tions of a dam-break scenario with varying time step sizes. The re-

sults, including the average iteration count for each computational

method utilized, are depicted in Figure 18. In this experiment, the

allowable average density and divergence errors for each method

are set to be less than 10−3. In contrast to alternative approaches,

our method, particularly with S.C., yields better results with a large

time step of Δt = 5ms .

6.3 Comparison to the Hybrid Particle-Grid Method

Comparing our dual-particle approach to the HPG method [Fei

et al. 2021; Um et al. 2014], we can find similarities, e.g., the vir-

tual particles in our method resemble the Eulerian grid in the HPG

method. However, they are essentially two different approaches.

We will demonstrate their differences in this subsection.

In a HPG method, the pressure projection is identical to the stan-

dard Eulerian grid method, and particles are only used to track

materials and carry quantities such as velocities. Depending on

the interpolation method between the particle and background

grid, all HPG methods can be mainly classified into the following

categories:

— Particle-In-Cell (PIC): The velocities or momentums di-

rectly transfer between particles and the background grid,

and the velocities or momentums on particles are not re-

tained after the particle-to-grid (P2G) interpolation [Har-

low 1962]. Due to the excessive numerical dissipation of

the original PIC method, other variants with higher-order

accuracies, such as Affine-PIC (APIC) and Polynomial-

PIC (PolyPIC), are developed. We take the standard PIC

method as an example, and the equations for the P2G and
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Fig. 18. Dambreak simulation with varying time step sizes. The average

iteration count for per time step is detailed in each fluid block below. In

this test, each fluid block containing 237.3k particles, the artificial viscosity

is set to 0.1, the particle spacing δ x is set to 0.005m, and the smoothing

length is set to 2.5δ x .

grid-to-particle (G2P) interpolations are formulated as

PIC P2G: mдv
n
д =

∑
p wдpmp v

n
p

PIC G2P: v
n+1
p =

∑
д wдp v

n+1
д

x
n+1
p = x

n
p + Δt

∑
д wдp v

n+1
д

wherem is the mass,w is the interpolation function, x is the

particle position, v is the velocity, n denotes the timestep,

subscripts д and p represents physical quantities defined on

the grid and particle, respectively.

— Fluid-Implicit-Particles (FLIP): The basic idea of the

FLIP method is to try to blend the velocity defined on the

background grid and particles. The high-frequency velocity

fields defined on particles are partially retained during the

G2P step to mitigate excessive numerical dissipation in the

PIC method [Brackbill and Ruppel 1986]. The P2G and G2P

processes in FLIP are written as

FLIP P2G: mдv
n
д =

∑
p wдpmp v

n
p

FLIP G2P: v
n+1
p =

∑
p wдp v

n+1
д + α

(
v

n
p −

∑
д wдp v

n
д

)
x

n+1
p = x

n
p + Δt

∑
д wдp v

n+1
д

where α is the blending ratio between FLIP and PIC. Note

a fraction of the high-frequency velocity modes defined on

particles is retained. Therefore, a value of α that is close to

1 can effectively reduce the numerical dissipation in fluid

simulation.

— Naturally-modified FLIP (NFLIP): Following Fei

et al. [2021], the G2P and P2G processes of NFLIP

[Stomakhin et al. 2013] are written as

NFLIP P2G:mдv
n
д =

∑
p wдpmp v

n
p

NFLIP G2P: v
n+1
p =

∑
д wдp v

n+1
д + α

(
v

n
p −

∑
д wдp v

n
д

)
(21)

x
n+1
p = x

n
p + Δtvn+1

p

Compared with a standard FLIP method, the major differ-

ence here is NFLIP uses v
n+1
p rather than

∑
д wдp v

n+1
д to up-

date particle positions. In other words, the high-frequency

velocity modes are added to particle positions as well. There-

fore, particles in the same sub-grid can move away from

each other at a faster speed.

Based on the above discussions, we can find several features

that distinguish our dual-particle approach from the HPG meth-

ods. First, our method does not take the P2G transfer, and the di-

vergence of velocity defined on virtual particles is taken with re-

spect to the real particles directly (see Equation (11)). Second, our

method updates particle velocities by directly taking pressure gra-

dients with respect to virtual particles. There is no G2P process to

transfer velocities from virtual particles to real ones as well. Third,

virtual particles carry all physical quantities (such as density, vol-

ume, etc) similar to a standard particle in SPH, facilitating the solv-

ing of the PPE (e.g., we can easily incorporate the semi-analytical

free-surface condition).

To provide more validation among those methods, we simulate

a dam-break scenario as shown in Figure 19. Apart from the dis-

cretization, all conditions are identical in this comparison. In ad-

dition, for all implementations, we added the density error com-

pensation term in Equation (13) to the source term of the PPE to

make the comparison fair. From the comparison, it can be noticed

that previous HPG methods fail to generate a regular distribution

of particles at the moment of the record. Besides, the comparison

shows that the Full-NFLIP is much more noisy than other meth-

ods, which also matches the conclusion given in previous stud-

ies [Ando et al. 2012; Fei et al. 2021; Jiang et al. 2015]. Within our

method, we adopt the SPH form of the pressure projection, dis-

tinguishing it from HPG methods that rely on Eulerian grid dis-

cretization schemes. The SPH form discretization avoids the dissi-

pation problem introduced by P2G/G2P operations [Fei et al. 2021;

Jiang et al. 2015] and allows our virtual particles to carry a wider

range of quantities than the grids in HPG methods. Accordingly,

our method achieves a more stable result compared to the stan-

dard particle-grid methods, as depicted in Figure 19.

To assess numerical dissipation, we perform multiple simula-

tions of a rotating square fluid patch and depict the total kinematic

energy curves in Figure 20. It is evident that HPG methods gener-

ally exhibit higher energy losses compared to our method using

S.C. Additionally, both FLIP0.99 and the Full-NFLIP method exhibit

markedly unstable behaviors in this test.

6.4 Comparison to the Stress-Point SPH Method

Our dual-particle approach shares a motivation similar to the

stress point SPH method [Belytschko and Xiao 2002].

The stress-particle method was initially introduced Dyka [Dyka

et al. 1997], which incorporates a set of points to store stress and

addresses the tensile instability inherent in the one-dimensional
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Fig. 19. Comparison to hybrid particle-grid methods. In this scenario, we

perform simulations with the PIC, APIC, FLIP0.90, FLIP0.99, NFLIP0.90,

Full-NFLIP (α is set to 1.0) and our method with S.C. In order to keep fair-

ness for comparison, the grid spacing in all hybrid particle-grid methods is

set to be equal to the spacing distances of virtual particles in our method,

and the threshold in solving the pressure Poisson equation is set to 10−4, a

density error compensation scheme similar to Equation (13) is also added

to all hybrid particle-grid methods. Besides, all fluids are modeled as

inviscid.

Fig. 20. The kinematic energy is plotted over time for the rotating square

fluid patch test. All simulations maintain a real particle spacing of 0.005m,

with grid spacing and virtual particle spacing set to 0.006m, and a time

step size of 0.05ms . It is observed that the rotating square fluid patches

modeled by hybrid particle methods incur higher energy losses compared

to our S.C. method.

SPH method. Subsequently, Randles and Libersky [2000] extended

the application of the stress-particle method to tackle the zero-

energy mode problem, boundary conditions, and tensile instabil-

ity issues associated with solid materials in two-dimensional space.

However, since the stress point SPH method needs to maintain a

staggered arrangement of stress points and velocity particles, it

can only be used to model materials with a relatively small de-

formation. To extend the method to handle large deformation ge-

omechanics problems, such as soil samples and slopes, Chalk et al.

[2020] recently documented various node–stress-point configura-

tions, highlighting instances of success and failure among them.

In fact, their work fails to answer how to work out the best fit

Fig. 21. Illustration of the Stress-Point SPH method [Chalk et al. 2020]. (a)

Stress points move with their associated velocity particles; (b) The distribu-

tion of velocity particles and stress points in an ideal case; and z(c) When

the material is deformed, some of the stress points may be too close to

each other or even overlap.

Fig. 22. Comparison to Stress-Point SPH Method [Chalk et al. 2020]. (a)

Our method using S.C.; (b) a combination of the stress point generation

method [Chalk et al. 2020] and our approximate projection method. In

this test, an artificial viscosity of 0.05 and a total of 560k particles are used.

This test shows that the Stress-Point SPH Method is not robust enough to

handle large deformations.

node–stress-point configuration to simulate problems with large

displacements and high velocities.

Our dual-particle approach can also be viewed as an alterna-

tive stress point SPH method, as virtual particles in our method

are introduced to store particle pressures only (note pressure and

stress have the same physics dimension). The major difference is

that “stress points” in our method are regenerated every timestep

while those in other stress point SPH methods follow their associ-

ated particles through out the whole simulation. To demonstrate

the difference, Figure 22 shows a comparison between our method

and the stress-point SPH method given by Chalk et al. [2020] (see

Figure 21(a)). Notice the stress-point SPH method is quite unstable

because “stress points” can get too close to each other as demon-

strated in Figure 21(c). As a result, the simulation finally fails as the

fluid undergoes a large deformation while our method remains sta-

ble throughout the whole simulation.

7 RESULTS

In this section, we simulate fluids in a variety of different scenarios.

All examples are run on a single machine with an Intel i7-8700k

CPU and an NVIDIA Geforce RTX2080 GPU, and time-consuming

parts (such as neighbor-list searching, incompressibility solver, etc)

are parallelized on the GPU. For all scenarios, the time step size is

set to 1ms , the cubic spline kernel [Monaghan 1992] is used, the

real and virtual particle spacing δx are 0.005m if not specified, the

smoothing lengths of real particles and virtual particles are set to

2.5δx . In all cases, the pressure solver terminates when the residual
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Fig. 23. Comparison of fluid stretching among different methods. A water fish drops on a ball under gravity. (a) all fluids are inviscid; (b) an artificial

viscosity of 0.05 is applied; and (c) both the artificial viscosity and the surface tension model [He et al. 2014] are applied.

of conjugate gradient iterations falls below 10−4 [Shewchuk et al.

1994].

7.1 Comparison to Other Particle Methods

To verify the effectiveness of our dual-particle approach in im-

proving the tensile stability of particle-based fluids, we also

implemented several existing particle methods for comparison,

including the divergence-free SPH method (DFSPH) [Ben-

der and Koschier 2015], the variational staggered SPH method

(VSSPH) [He et al. 2020] which can be viewed as an extension to

the staggered particle method [He et al. 2012b], and the PBF [Mack-

lin and Müller 2013] with the adsorption force turned off.

Small-scale thin features of fluids (Figures 23 and 24). In

scenarios where the fluid undergoes splashing or forms thin sheets,

particles tend to move away from each other, creating negative-

pressure regions that trigger tensile instability. Therefore, these

scenarios pose significant challenges for most particle-based meth-

ods. We setup a liquid collision example to compare our method to

several existing approaches, as shown in Figure 23. In this test, the

PBF method fails to produce liquid sheets due to a lack of negative

pressures. In DFSPH and VSSPH, both suffer from tensile instabil-

ity due to the irregular distribution of fluid particles. Since the dual-

particle method with S.A is equivalent to the original approximate

projection method, the simulation results still suffer from tensile

instability. By instead using S.B, it can be noticed the tensile in-

stability issue is alleviated, but still not much. Our dual-particle

method using S.C shows the best performance in producing liquid

films. By adding a little viscosity, Figure 23 shows the simulation

results can be significantly improved for our dual-particle method

with S.C. Unfortunately, all other methods still fail to generate a

liquid film with uniformly distributed particles. We also use the

surface tension solver [He et al. 2014] to enhance the small-scale

features of fluids, but there are no significant improvements for

other methods. The comparison in Figure 23 shows that if the ten-

sile instability is not weakened, the viscosity and surface tension

have little effect on improving the stability of small-scale details.

The same results can also be noticed with the simulation in Fig-

ure 24. In this scenario, all methods except our method with S.C

fail to capture stable thin features of fluids.

Fountain (Figure 25). As shown in Figure 25, the fountain is

modeled by the PBF method [Macklin and Müller 2013], VSSPH

method [He et al. 2020]), and our method with S.C. This scenario

contains 1M fluid particles. The XSPH artificial viscosity is used

and the parameter is set to 0.05. According to the comparison, the

PBF fails to preserve a good shape liquid sheet due to missing at-

tractive interparticle pressure forces. Please note both the VSSPH

and our methods have taken into account of the corrective gradient

scheme, the semi-analytical boundary [Nair and Tomar 2014], the

particle-shifting technique [Xu et al. 2009] and the kernel normal-

ization. The only difference is our method defines pressure sam-

plings on newly created virtual particles. From the comparison, it

shows our dual particle framework can effectively reduce the ten-

sile instability and generate a much better well-shaped liquid sheet

than that generated by the VSSPH method [He et al. 2020].

7.2 More Demonstrations

Due to the reduction of tensile instability, our dual-particle ap-

proach can significantly improve the visual quality of SPH flu-

ids. Figure 27 demonstrates highly viscous fluids. These viscous

fluids with a viscosity of 400Pa · s are simulated with the PBF

method [Macklin and Müller 2013], VSSPH method [He et al. 2020]

and our method, respectively. The surface tension [He et al. 2014]

is also applied to the fluids. Our method achieves a more stable

result in the comparison. Figure 1(Middle) demonstrates a cup

dropped onto the ground and a bulk of water consisting of 504.6k

particles inside the cup splashes out. In Figure 1(Right) several wa-

ter fishes crash onto a solid gargoyle, and countless small-scale

thin features of fluid are generated. This scenario contains 1.46M

particles and the XSPH artificial viscosity is set to 0.1. In Figure 26,

several water fishes are dropped onto the ground, it contains a to-

tal of 1.50M particles and the parameter of XSPH artificial viscosity

is set to 0.05.
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Fig. 24. Two fishes collide in zero-gravity space. The XSPH artificial viscos-

ity model is applied and the parameter is set to 0.05.

Fig. 25. Fountain. A fountain consisting of 1M particles is simulated

by the PBF [Macklin and Müller 2013](Left), VSSPH method [He et al.

2020](Middle) and our method with S.C. An artificial viscosity of 0.05 is

applied to all simulations.

8 CONCLUSION

We have presented a dual-particle approach to address tensile in-

stability in a projection-based fluid incompressibility solver. Un-

der the dual-particle framework, we demonstrate how to discretize

the approximate projection operator, the divergence operator and

the gradient operator used in a PPE on dual particles. Experiments

show our method can effectively reduce the particle clustering ar-

tifacts introduced by tensile instability. Small-scale thin features,

such as liquid streamlets and sheets, can be well preserved in in-

compressible free-surface flows. Our dual-particle approach makes

it possible to build a functional and robust SPH incompressible

fluid solver without relying on clamping negative pressure. Be-

sides, tests also demonstrate that the regular virtual particle dis-

tribution is beneficial to alleviate the restriction on the time step

size for pressure projection in particle fluids.

9 LIMITATIONS AND FUTURE WORK

Our method has several limitations. First, it does not preserve

the momentum conservation property of traditional SPH methods.

However, the loss of momentum is small provided that the vir-

tual particle distribution is regular. Second, referring to previous

works [Chen et al. 1999; Liu et al. 1995], particle methods with a

higher order of consistency, such as the Corrective Smoothed-

Particle Method (CSPM) or Reproducing Kernel Particle

Methods (RKPM), demonstrate enhanced tensile stability in com-

parison to the standard SPH method. Consequently, we aim to

Fig. 26. Fishes. This scenario is simulated by our method using S.C.

integrate higher-order accuracy discretization schemes [Chen et al.

2020a; Reinhardt et al. 2019] into our dual-particle framework to

further enhance the performance of our method. Third, the vir-

tual particles increased the computational cost of our method, par-

ticularly for the S.C. Compared to the standard SPH method such

as DFSPH and VSSPH, our method requires more memory and

computational costs. However, the uniform distribution of virtual

particles facilitates the application of various acceleration tech-

niques, and it would be interesting to study more neighbor query-

ing algorithms, spatial acceleration structures, multigrid methods

and other projection acceleration algorithms to improve the effi-

ciency of the dual-particle approach. Fourth, S.C. may not be the

optimal approach to generate virtual particles due to the mesh-

less nature of the SPH discretization. We shall experiment with

other approaches, e.g., by using a GPU-based sparse octree, to

ALGORITHM 1: Dual Particle ISPH

while t < tstop do

for All real particle i do

v
∗
i ← v

n
i + Δt · f ;

x
∗
i ← x

n
i + Δt · v∗i ;

end

Generate virtual particle I ;

for All real particle i and virtual particle I do

Find real and virtual neighboring particles of i and I ;

end

Compute the volumes of virtual and real particles (Equations (7)

and (8) ) ;

for All virtual particle I do

Compute velocity divergence DI (v
∗) (Equation (11));

Add ΛI (Equation (13)) to DI (v
∗) ;

end

Discretize the pressure Laplacian L̂I (p) (Equation (14));

Impose the free-surface boundary condition;

for All virtual particle I do
Solve the discretized Poisson pressure equation

(Equation (4))

using the conjugate gradient method, until the residual is

less than a specific threshold;

end

for All real particle i do
Compute pressure gradient Gi (p) (Equation (17));

end

for All real particle i do

v
n+1
i ← v

n
i −

Δt
ρ0
· Gi (p);

end

end
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Table 1. Statistics In These Scenarios, the Maximum Allowable Relative Errors for Our Methods and VSSPH are Set to 10−4, and The Iteration Number of

PBF Method is Fixed to 10

Name1 Nr eal
2 Nvir t .

3 tpr ess . (s)4 tvir t . (s)5 tneiдh . (s)6 ttot al (s)7 Frame Number8 Total Time9

Figure 1(Middle) 505k 0.57-1.1M 1.8 0.030 0.107 2.3 2400 1h32min

Figure 1(Right) 1.5M 1.8-9.3M 5.2 0.088 0.375 5.9 2600 4h15min40s

Figure 25(Our Method) 1.0M <2.6M 2.7 0.016 0.125 2.9 1900 1h31min50s

Figure 25(VSSPH) 1.0M <2.6M 0.94 — 0.059 1.2 1900 38min

Figure 25(PBF) 1.0M <2.6M 0.32 — 0.056 0.41 1900 12min59s

Figure 16(a)(S.C) 237k 312-401k 0.62 0.015 0.059 0.74 1600 19min44s

Figure 16(a)(S.B) 237k 237k 0.37 0.045 0.059 0.51 1600 13min36s

Figure 16(a)(S.A) 237k 237k 0.38 — 0.060 0.46 1600 12min16s

Figure 16(a)(VSSPH) 237k 237k 0.41 — 0.015 0.47 1600 12min32s

Figure 16(a)(PBF) 237k 237k 0.08 — 0.014 0.15 1600 4min

Figure 24(S.C) 144k 0.2-1.0M 0.35 0.010 0.032 0.41 600 4min6s

Figure 24(S.B) 144k 144k 0.18 0.022 0.029 0.24 600 2min24s

Figure 24(S.A) 144k 144k 0.16 — 0.030 0.21 600 2min6s

Figure 23(a)(S.C) 72K 97-280k 0.20 0.006 0.024 0.24 600 2min24s

Figure 23(a)(S.B) 72k 72k 0.077 0.019 0.019 0.12 600 1min12s

Figure 23(a)(S.A) 72k 72k 0.078 — 0.019 0.11 600 1min6s

Figure 26 1.5M 1.8-4.1M 4.5 0.086 0.29 5.0 1900 2h38min20s

Figure 27(Our Method) 520k 0.6-1.5M 1.08 0.033 0.10 1.6 1600 42min40s

Figure 27(VSSPH) 520k 0.6-1.5M 0.62 — 0.024 0.97 1600 25min52s

Figure 27(PBF) 520k 0.6-1.5M 0.23 — 0.025 0.66 1600 17min36s

1S.A., S.B., S.C. respectively represent colocational strategy, particle shifting strategy and spatially adaptive strategy. 2Nr eal represents the number of real particles; 3Nvir t .

represents the number of virtual particles; 4tpr ess . represents the average computational cost for solving Equation (4); 5tvir t . represents the average computational cost for

generating virtual particles; 6tneiдh . represents the average computational cost for searching neighboring particles; 7ttot al represents the average total computational cost for

one frame; 8“Frame Number” represents the total number of frames for the scenario; 9. “Total Time” represents the total computational cost for the scenario.

The spacing distances of real and virtual particles are all set to 0.005m, the smoothing lengths are all set to 0.0125m.

Fig. 27. High viscous fluid. A high viscous fluid consisting of 500k particles

is simulated by the PBF Method [Macklin and Müller 2013] (Left), VSSPH

method [He et al. 2020] (Middle) and our method with S.C (Right). The

viscous model in Liu et al. [2021] and Weiler et al. [2018] and the surface

tension model in He et al. [2014] are used for this example.

accelerate generating virtual particles. Fifth, it is worthwhile to

explore the applicability of the particle splitting strategy [Ando

et al. 2012] with the potential to notably improve the stability

of small, thin features in fluids. Nevertheless, implementing the

particle splitting strategy poses challenges for parallelization on

GPUs and requires meticulous integration with the SPH discretiza-

tion method [Winchenbach and Kolb 2021]. Addressing these chal-

lenges will be a focus of our future work. Finally, since the dual-

particle approach has been proven effective at removing tensile

instability for solving fluid incompressibility, we would like to ex-

tend this approach to address tensile instability in other physical

terms, such as viscosity, elasticity as well as their interference.
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