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Abstract—In simulating viscous incompressible SPH fluids, incompressibility and viscosity are typically solved in two separate stages.

However, the interference between pressure and shear forces could cause the missing of behaviors that include preservation of sharp

surface details and remarkable viscous behaviors such as buckling and rope coiling. To alleviate this problem, we introduce for the first

time the semi-implicit method for pressure linked equations (SIMPLE) into SPH to solve incompressible fluids with a broad range

viscosity. We propose to link incompressibility and viscosity solvers, and impose incompressibility and viscosity constraints iteratively to

gradually remove the interference between pressure and shear forces. We will also discuss how to solve the particle deficiency problem

for both incompressibility and viscosity solvers. Our method is stable at simulating incompressible fluids whose viscosity can range from

zero to an extremely high value. Compared to state-of-the-art methods, our method not only produces realistic viscous behaviors, but is

also better at preserving sharp surface details.

Index Terms—Smoothed particle hydrodynamics (SPH), SIMPLE algorithm, fluid simulation, incompressibility, viscosity

Ç

1 INTRODUCTION

VISCOUS fluids can be found everywhere in our daily life,
such as honey, oil and ketchup, etc. Although smoothed

particle hydrodynamics (SPH) has been widely used to
model low viscous or nearly inviscid incompressible flu-
ids [1], [2], how to correctly model highly or even dynamic
viscous incompressible fluids still faces challenges. Since
explicit methods can hardly be extended for modeling
highly viscous fluids due to the time step restriction [3], [4],
recent works prefer to solve fluid viscosity implicitly [5],
[6], [7]. According to the analysis in [7], an ideal implicit vis-
cosity solver should satisfy several requirements as listed in
their work. However, in simulating highly viscous incom-
pressible fluids, an additional requirement, i.e., incompres-
sibility and viscosity constraints should not interfere [6], [8],
is also necessary to be fulfilled.

In traditional projection-based particle fluid solvers, the
most common way to solve the governing equations of

viscous incompressible fluids is to apply operator splitting,
where the influence of pressure and shear forces are consid-
ered independently [9], [10]. While operator splitting has
the advantage of reducing computational cost and simplify-
ing code implementation, Larionov et al. [8] pointed out
splitting viscosity from projection will cause the loss of
behaviors that depend on coupling between pressure and
shear forces, such as preservation of sharp surface details
and the rope coiling effect. This is because when both
incompressibility and viscosity constraints are solved inde-
pendently but only once, at least one of the two constraints
will be damaged by the other at the end of each simulation
step. Therefore, referring to fluid-solid coupling method
in [11], a natural question is why not select an existing
incompressibility solver and an existing viscosity solver,
then iterate over them multiple times to alleviate the inter-
ference artifact? Unfortunately, according to our test in
Figs. 7, 8 and 13c, where the DFSPH incompressibility
solver [12] and the implicit viscosity solver [7] are selected,
this strategy does not work well. The reason could be that if
incompressibility and viscosity constraints are solved inde-
pendently, the interference between pressure and shear
forces could introduce drift errors to each other.
Peer et al. [6], [13] proposed an alternative way to solve the
problem caused by the interference. However, the con-
structed velocity field suffers from non-physical velocity
damping [7]. Our tests show that their method fails to repro-
duce the correct coiling effect, as shown in Fig. 8.

Motivated by the semi-implicit method for pressure linked
equations (SIMPLE) [14], we propose a novel iterative strat-
egy for simulating viscous incompressible SPH fluids, with
which the interference artifact can be addressed. Unlike
the above mentioned simple strategy, the incompressibility
and viscosity solvers in our method are linked. In solving
the momentum equation for viscosity, aside from the veloc-
ity field, a term involving the pressure gradient is also
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integrated. This guarantees that the effect of pressure is
properly considered when fluid viscosity is solved. In solv-
ing the momentum equation for incompressibility, the
linked viscosity term will be discarded due to the conver-
gence characteristics of SIMPLE algorithm. Therefore, a tra-
ditional projection-based incompressibility solver still can
be used to solve the pressure Poisson equation. When
incompressibility and viscosity solvers are taken iteratively,
our method is able to converge to a globally optimal solu-
tion. Therefore, remarkable viscous behaviors, such as coil-
ing and buckling, can be modeled with a good property of
preserving sharp surface details. Besides, our method is sta-
ble at simulating incompressible Newtonian and non-New-
tonian fluids with any given viscosity, as demonstrated in
Figs. 1 and 2.

2 RELATED WORKS

Viscosity Models. Many forms of different viscosity models
have been applied in computer graphics. We only review the
most commonly used ones here. The first category uses the
finite different method to discretize the viscosity term [15],
which will be referred to as the local viscosity model consider-
ing its similarity to the Laplacian operator proposed by [16].
An explicit Euler integrationmethodwas used to impose vis-
cosity in [4], [17], [18]. To enable stable simulation of highly
viscous fluids, Weiler et al. [7] for the first time proposed an
implicit method to solve viscosity. Compared to other viscos-
ity models, the local model have a number of desirable fea-
tures including being Galilean invariant, linear and angular
momentum conservation. Besides, it does not suffer from the
particle deficiency problem. The second category is labelled
as the global viscosity model, which typically requires to take
into account second-ring neighbors to calculate viscous
forces. Since viscosity and incompressibility constraints can
interfere, Peer et al. [6] proposed to project the velocity gradi-
ent to a target that does not only encode the desired viscosity,
but also preserves arbitrary velocity divergences. Takahashi
et al. [5] solved the exact viscosity implicitly to enable the
usage of larger time steps and higher viscosities. Bender and
Koschier [12] also proposed an implicit viscosity solver by
using a parallel Jacobi method to enforce a target strain rate.
Peer and Teschner [13] extended their earlier work to pre-
serve the vorticity for highly viscous fluids. One disadvan-
tage of the exact viscosity model is that artificial viscosity
will be introduced to boundary due to the particle deficiency
problem [7]. The last category is non-physical viscosity
model, which is labelled as the XSPH artificial viscosity model.

It was originally proposed byMonaghan [19] to prevent pen-
etration for particles impinging on each other. Schechter and
Bridson [20] introduced this technique into computer
graphics to stabilize the ghost SPH method. Macklin and
M€uller [21] applied XSPH viscosity in a position-based fluid
solver. Although M€uller et al. [22] proposed to use a slightly
different formulation to model viscosity, their formulation
still can be regarded as an XSPH artificial viscosity model as
both models have the same physical meanings. Other works
applying this method include [23], [24], [25]. Its wide usage
attributes to the good performance in stability. However, the
XSPH artificial viscosity model fails to reproduce certain
physical features. For example, it cannot conserve angular
momenta and introduces artificial viscosity even for rigid
body rotation.

IncompressibilityModel.We categorize all incompressibility
solvers in SPH into two main classes. One aims to solve fluid
incompressibility that targets a desired density. In the early
work, incompressible fluids are assumed to be slightly com-
pressible. Therefore, a equation of state (EOS) was applied to
model the relationship between pressure and density [4],
[26], [27]. However, since EOS-based solvers are subject to
the limitation of small time steps, Solenthaler and Pajarola [1]
first proposed an iterative predictive-corrective scheme to
enforce a constant density. Continuous efforts on accelerating
the convergence rate were taken by several later works [2],
[28]. The other class aims to solve fluid incompressibility that
targets the divergence-free condition. Cummins and
Rudman [16] first proposed an approximate projectionmethod
to enforce incompressibility. Motivated by the staggered-grid
method, He et al. [10] proposed a staggered particle method to
simulate fluid-solid coupling. Bender and Koschier [12] pro-
posed to fulfil the divergence-free condition in a way similar to
the iterative EOS-based solvers. Among all solvers, the veloc-
ity-constraint incompressibility model are preferable for simu-
lating viscous fluids because undesired bulk viscosity could
arise if the divergence-free condition is not fulfilled [6], [29]. For
more discussions on incompressibility solvers, we refer to the
reviewpapers [30], [31], [32].

The Linkage Between Solvers. In simulating highly viscous
incompressible fluids with large time steps, the interference
between pressure and viscosity solvers cannot be ignored [6].
Under the Eulerian frame, this problem has been studied
more throughly [8], [14]. However, only a few works have
been done to address this issue under the Lagrangian frame.
Peer et al. [6], [13] obtained the viscosity constraint by projec-
ting the velocity gradient to a target and reconstructing the
velocity field. This approach is able to avoid the interference,

Fig. 2. Non-Newtonian fluids. (a) A low viscosity (m ¼ 50Pa � s) Newto-
nian bunny (left) and a shear thickening bunny (right) with equal initial
viscosities are dropped onto the ground. The motion of the shear thick-
ening bunny slows down upon impact, but then restores as its shear rate
decreases; (b) A high viscosity (m ¼ 5� 105Pa � s) Newtonian bunny
(left) and a shear thinning bunny (right) with equal initial viscosities are
dropped onto the ground. The motion of the shear thinning bunny accel-
erates upon impact.

Fig. 1. Newtonian fluids. Three bunnies with different viscosities are
dropped onto a bar. This example shows that our method is stable at
simulating incompressible fluids with a viscosity that can range from
zero to an extremely high value.
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yet a significant damping is introduced. Additionally, their
approach cannot simulate low viscous fluids realistically [7].
Aside from viscous incompressible fluids, the interference
problem also exists in solid-fluid coupling or air-liquid cou-
pling. Gissler et al. [11] proposed to resolve the instability in
fluid-rigid coupling or rigid-rigid coupling with SPH. Batty
et al. [33] reformulated solid-fluid coupling as a kinetic
energy minimization problem, achieving a stable and accu-
rate unified two-way coupling solver. Aanjaneya et al. [34]
adopted this similar idea, but proposed a monolithic solver
to simulate bubbles. To realize Euler-Lagrange solid-fluid
coupling, Robinson-Mosher et al. [35] proposed a novel
method that handles solid-fluid coupling in a fully implicit
manner to obtain better stability. Robinson-Mosher et al. [36]
later extended their work to obtain a symmetric formulation
of the coupled system,making it easier to solve.

3 OVERVIEW

The governing equations for a viscous incompressible fluid
are expressed in the Lagrangian form as

r
Dv

Dt
¼ �rpþr � t þ f; (1)

r � v ¼ 0; (2)

where v is velocity, r is density, p is pressure, t ¼
m rvþrvT� �

is deviatoric stress tensor, m is the dynamic
viscosity coefficient, f is external force per unit volume. We
assume r to be constant and m be varying in space. To better
understand this interference issue between incompressibil-
ity and viscosity in operator splitting schemes, we take the
prediction-correction scheme applied in [9] for a demonstra-
tion. In the prediction step, an explicit integration without
enforcing incompressibility is taken, i.e., only shear and
body forces are used to update the velocity field. Equa-
tion (1) should be fulfilled at the end of the prediction step,
while the divergence-free condition is not fulfilled yet.
Then, a pressure Poisson equation is solved to enforce the
divergence-free condition in Equation (2). Unfortunately,
after the velocity field is updated with the pressure force,
Equation (1) does not stand any longer due to the changes
in the shear force and velocity.

Our purpose is to guarantee the final status of p and v at
the end of each simulation step fulfill both governing equa-
tions. Despite the dependence of m on space, we make an
assumption that r � m rvþrvT� �� � ¼ mr2vþ mr � ðrvT Þ.
The second term just cancels out for incompressible fluids
due to the relationship mr � ðrvT Þ ¼ mrðr � vÞ ¼ 0. After
taking an implicit backward Euler method in time, the
momentum and continuity equations are simplified as

r
vnþ1 � v�

dt
¼ �rpnþ1 þ mr2vnþ1; (3)

r2pnþ1 ¼ r

dt
r � v� þ r � mr2vnþ1

� �
; (4)

where v� is the intermediate velocity after adding external
forces, dt is time step size, superscript nþ 1 indicates the new
value at the end of each simulation step. The difficulty in solv-
ing Equations (3) and (4) lies in that the unknown pressure

pnþ1 and velocity vnþ1 are coupled for both equations. Even
worse, the value of r � mr2vnþ1ð Þ could be quite sensitive to
particle distributions due to the third order derivative of v.

To solve the above-mentioned issue, a well-known SIM-
PLE algorithm was originally proposed in the finite volume
method (FVM) [14]. Before we go into the details on how to
extend the SIMPLE algorithm to SPH, let us review the fun-
damental principles of the SIMPLE method. To solve Equa-
tions (3) and (4), the SIMPLE algorithm starts with a
guessed pressure field p�. The momentum equation for vis-
cosity can then be solved as follows:

r
v0 � v�

dt
¼ �rp� þ mr2v0: (5)

However, unless the correct pressure is given, the resulting
velocity field v0 will not satisfy the divergence-free condi-
tion in Equation (2), i.e., r � v0 6¼ 0. Therefore, we should
find a way to improve p�, so that the velocity field can get
closer to satisfying the divergence-free condition. Let us
denote the pressure correction as p0, the new velocity v00

after correction is expressed as

v00 ¼ v0 � dt

r
rp0; (6)

where v00 satisfies r � v00 ¼ 0. By taking the divergence of
both sides, we have

r � dt
r
rp0 ¼ r � v0; (7)

which is the same as [29].
Compared to Equation (4), we have dropped the viscosity

term from the above equation. As suggested by Patankar [14],
the omission of the viscosity term is absolutely unacceptable
if the ultimate solution would not be the true solution of the
discretized momentum and continuity equations. Fortu-
nately, as we solve Equations (5) and (7) iteratively, both the
velocity and pressure fields can progressively converge to
their final solutions (refer to Fig. 13a). That is to say, the global
solution is actually uninfluenced by the approximation of
dropping the viscosity term. Besides, above simplification is
essential to extend the SIMPLE algorithm to SPH because the
viscosity term will otherwise introduce a third-order differ-
ential operator, which is difficult to discretize, to SPH. Please
note that the word ‘semi-implicit’ in the name SIMPLE is
used to acknowledge the omission of the viscosity term in
Equation (6). For completeness, we list the full operations of
SIMPLE algorithm as follows:

1) Guess a pressure field p�;
2) Solve the momentum Equation (5) to obtain v0;
3) Solve the pressure Poisson Equation (7) to obtain p0;
4) Add p0 to p�;
5) Return to step 2 and repeat the whole procedure

until the converged solution is obtained.
Note the rate of the convergence depends on the particu-

lar formulation of the p0 equation [14]. If too many terms are
omitted, divergence may result. For example, if the fluid
incompressibility is solved with the DFSPH method, diver-
gence occurs due to the omission of the pressure field, as
shown in Fig. 13c.
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In the following section, we will discuss how to apply the
SIMPLE algorithm to solve viscous incompressible fluids on
particles.

4 EXTENDING THE SIMPLE ALGORITHM TO SPH

Since the SIMPLE algorithm was originally proposed under
the Eulerian framework, whether it works or helps to
improve the accuracy for particle-based fluid simulation
remains uninvestigated yet. The difficulty lies in how to
address the sensitive particle distribution and particle defi-
ciency problems for particle-based fluid simulation.

Considering a fluid that is discretized into a set of par-
ticles, each particle is associated with a lumped mass mi,
volume Vi and position xi. The particle approximation of an
arbitrary function f can be written in a summation of the
neighboring particles as follows:

fi ¼
X
j

VjfjWij; (8)

whereWij denotes the smoothing functionW ðkxi � xjk; hÞ, h
is the smoothing length. To derive SPH formulations for gra-
dient and Laplacian operators, there in fact exist a number of
different ways [37], [38]. To discretize the pressure gradient,
the symmetric repulsive pressure gradient model is mostly
used because of its momentum conservation feature. How-
ever, this model is sensitive to the tensile instability prob-
lem [31]. In order to capture realistic stretching behaviors in
viscous fluids (e.g., Fig. 4), we choose to discretize the gradi-
ent operator with the Taylor-series consistentmodel

rif ¼ �
X
j

VjfijriWij; (9)

where fij is short for fi � fj, riWij ¼ xi�xj
rij

@Wij

@rij
and rij ¼

xi � xj
�� ��. Compared to the symmetric repulsive model, the
asymmetric one is more accurate as it recovers a zeroth
order accuracy. Besides, it is better at preserving features
that undergo stretching [39]. For the Laplacian operator, its
standard form based on a finite difference discretization is
written as

r2
if ¼

X
j

Vj

fij � rij
r2ij þ h2

riWij; (10)

where h is a small value to prevent singularities and
rij ¼ xi � xj.

4.1 Viscosity

To solve the momentum Equation (5), both rp� and r2v0

should be discretized first. If a particle’s location is far from
free surface boundary, i.e., its support domain is not trun-
cated by the boundary, we can easily get the discretized
forms by inserting p� and v0 into Equations (9) and (10).
Unfortunately, if the particle is near the free surface bound-
ary, both terms suffer from the particle deficiency problem.
To investigate this problem, we illustrate a one-dimensional
linear function in Fig. 5a. The corresponding analytic for-
mula and numerical calculation of its first and second order
derivatives are demonstrated in Fig. 5b. We can notice the
particle approximation no longer reproduces the correct
first and second order derivatives for boundary particles.

To resolve the particle deficiency problem, one could
introduce ghost air particles, as was done in [20]. However,
creating ghost air particles requires more memory and
computational resources.

Fortunately, a special treatment of free surface boundary
conditions in fluids allows us to solve the particle deficiency
problem efficiently with a semi-analytical approach [39],
[41], [42]. Following their work, if liquid particles jl and
ghost air particles ja are uniformly distributed, we can get
the following relationship:

X
j

VjriWij ¼
X
jl

VjlriWijl þ
X
ja

VjariWija

¼ r1 ¼ 0:

(11)

Fig. 3. Three bunnies with different viscosities are dropped onto a table
to demonstrate their interactions.

Fig. 4. An armadillo consisting of 462k particles is dropped onto a bench.
Our method is able to reproduce remarkable viscous behaviors, such as
rope coiling and buckling, as well as other small-scale thin features,
such as filaments and sheets.

Fig. 5. A linear function used to demonstrate the particle deficiency prob-
lem in SPH. We select the Cubic spline function with h ¼ 2 as the
smoothing length. (a) A linear function and the corresponding particle
representation; (b) Analytical formula and numerical calculations of the
first and second derivatives of the linear function.

LIU ETAL.: ADAPTED SIMPLE ALGORITHM FOR INCOMPRESSIBLE SPH FLUIDS WITH A BROAD RANGE VISCOSITY 3171

Authorized licensed use limited to: Institute of Software. Downloaded on August 31,2022 at 15:42:31 UTC from IEEE Xplore.  Restrictions apply. 



Therefore, the pressure gradient can be discretized as

rip
� ¼

X
jl

Vjlp
�
jl
riWijl þ

X
ja

Vjap
�
jariWija

� p�i
X
j

VjriWij;
(12)

where we have assumed all virtual ghost air particles ja

have a constant atmosphere pressure patm (which is typi-
cally set to p�ja ¼ patm ¼ 0). The velocity of virtual ghost
air particles vja is assumed to be equal to its central fluid
particle i, i.e., vja ¼ vi. This has the advantage that no
artificial damping will be introduced into fluids by vir-
tual ghost air particles. By substituting (11) into (12) and
setting p�ja to zero, the pressure gradient can be derived
as [39]

rip
� ¼

P
jl Vjlðp�jl � p�i ÞriWijl ; i =2 B

P
jl Vjlp

�
jl
riWijl ; i 2 B

8<
: ; (13)

where B represents the boundary particles whose support
domain intersect with the boundary as Fig. 10. How to iden-
tify interior particles will be left to the next section.

Similarly, we discretize the Laplacian of the velocity
field as

r2
iv
0 ¼ 2ðdþ 2Þ

X
jl

Vjl

v0
ijl
� rijl

rijl
���

���2 þ h2
rWijl : (14)

The derivation of Equation (14) can be found in [3] or [32].
Note that the contributions from virtual ghost air particles
for both the pressure gradient and Laplacian of velocity
have been semi-analytically eliminated. In fact, the formula-
tion in Equation (14) is exactly the same as the one used
in [7]. Yet our derivation has provided a better motivation
for its effectiveness at reducing visual artifacts caused by
the particle deficiency problem.

Based on the above discretization scheme, the momen-
tum Equation (5) can be divided into the following two
steps

v�� ¼ v� � dt

r
rp�; (15)

v0 ¼ v�� þ dtm

r
r2v0: (16)

Note Equation (16) is the same as the one solved in [7].
The calculated solution is then substituted into the pressure
Poisson equation to enforce fluid incompressibility.

4.2 Incompressibility

To guarantee the convergence, the incompressibility solver
should be properly derived from the pressure Poisson equa-
tion, and be able to impose the divergence-free condition on
the velocity field (as discussed in Section 3). We therefore
prefer to apply an approximate projection method to solve
the fluid incompressibility.

Solving the pressure Poisson Equation (7) involves discre-
tizing both the gradient and Laplacian operators as well.
Besides, free-surface boundary conditions, which affect the
convergence in solving the pressure Poisson equation [43],

should also be considered. In a projection based method, the
pressure Poisson Equation (7) is to be transformed into a lin-
ear system in the form of Ax ¼ b. The coefficient matrix A is
symmetric, but cannot be guaranteed to be positive definite if
no free boundary condition is imposed. For example, if a par-
ticle i has no neighbors, the corresponding diagonal entry of
A is zero, indicating the coefficient matrix is singular. To
resolve this problem, we introduce ghost air particles at the
free surface boundary [42]. With enough ghost air particles, a
particle at the free surface boundary should have full neigh-
bors. By imposing theDirichlet boundary condition, i.e., pj

a ¼
0 for ghost air particles, the coefficient matrixA is guaranteed
to be positive definite. Therefore, typical iterative methods
such as the conjugate gradient method can applied to solve
the linear system. In the following context, we will give more
details on how to discretize Equation (7) and impose the free-
surface boundary condition.

Integrating virtual ghost air particles, the velocity diver-
gence can be easily derived as

ri � v0 ¼
X
jl

Vjl v0
jl
� v0i

� �
� riWijl : (17)

However, discretizing the Laplacian of pressure will not be
an easy task because we do not know how to calculate
riWija if ghost air particles are not created. Following [41],
we apply the semi-analytical method to discretize the Lapla-
cian of pressure. The neighbors of particle i could contain
both particles jl and ghost air particles ja. Since the pressure
value of ghost air particles p0ja can be set to zero according
to Dirichlet boundary conditions [44], we can discretize the
Laplacian of pressure as

r2
i p
0 ¼ �

X
jl

aijlp
0
i �

X
ja

aijap
0
i þ

X
jl

aijlp
0
jl
;

(18)

where aij ¼ � Vj
rijþh2

@Wij

@rij
is the coefficient. After rearrange-

ment for different cases, the discretized Laplacian of pres-
sure is written as

r2
i p
0 ¼

P
jl aijl p0

jl
� p0i

� �
; i =2 B

�A0p
0
i þ

P
jl aijlp

0
jl
; i 2 B

8<
: ; (19)

where A0 is a predefined value of Ai ¼
P

jl aijl calculated for
a particle with full neighbors at the beginning of simulation
(e.g., by choosing an interior particle whose support domain
is not clumped by boundary), as shown in Fig. 10a. We iden-
tify a fluid particle i as a boundary particle only if Ai < A0

(Fig. 10b). Therefore, the boundary particle setB is defined as

B ¼ fi j Ai < A0g: (20)

Another issue in solving fluid incompressibility with
Equation (7) is the particle density drifting problem [46],
because the velocity divergence-free condition cannot cor-
rect cumulative density errors. Motivated by the error com-
pensating source (ECS) used in [47] and [48], we solve this
problem by adding the following term

Li ¼ a
ri � r0
r0dt

; (21)
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to the right-hand side of Equation (7) for particles with ri >
r0, where r0 represents the reference density and a is a posi-
tive constant. Equation (21) is similar to the source term of
the projection method which corrects the density error [9].
When compression occurs, this term can generate repulsive
forces to correct cumulative density errors. a should ensure
that the value of this term is close to the right-hand side of
Equation (7), otherwise, it may be ineffective or cause insta-
bility. Therefore, we typically set a ¼ 106 in our current
implementation.

In calculating the pressure force, although it is common
to clump particle pressures to zero [2], we retain the nega-
tive pressure to capture the fingering behavior in viscous
fluids. More details on how resolve the tensile instability
problem can be found in [31], [48].

To evaluate the stability of our incompressibility solver, a
dambreak case is simulated with four different time steps.
As shown in Fig. 11, consistent behaviors can be noticed for
all simulations.

Algorithm 1. Adapted SIMPLE Algorithm for Viscous
Incompressible SPH Fluids

1: while t < tstop do
2: dt CFLðvni Þ;
3: for all fluid particle i do
4: v�i  vni þ dtFext;
5: x�i  xni þ dtv�i ;
6: for all fluid particle i do
7: N i  Find neighbors using x�i ;
8: Detect boundary particles;
9: Set global iteration number iter ¼ 0;
10: while iter < itermax do
11: for all fluid particle i do
12: Compute velocity divergence ri � v0;
13: Add Li tori � v0;
14: while �p > �p0 do
15: Take one CG iteration to update p0;
16: Compute the relative error �p for Equation (7);
17: for all fluid particle i do
18: Compute p�þ ¼ p0;
19: for all fluid particle i do
20: Compute pressure gradient rip

�;
21: while �v > �v0 do
22: Take one CG iteration for viscosity;
23: Compute the relative error �v for Equation (5);
24: for all fluid particle i do
25: Set new velocity vnþ1i ¼ v0i;

4.3 Iterative Solver

To demonstrate the interference problem between incom-
pressibility and viscosity solvers, we simulated the rope
effect with two different settings. In Fig. 6a, the viscosity
solver is scheduled to run first. We can notice the incom-
pressibility solver causes significant loss of viscous behav-
iors, such as the rope coiling. In contrast, when the
incompressibility solver is taken first, the volume of fluid
cannot be well preserved, as demonstrated at bottom of
Fig. 6b. To solve the interference problem, we propose to
improve the original SIMPLE algorithm by solving incom-
pressibility first. In case the divergence-free condition is

violated by the viscosity solver, we take more overall itera-
tions to alleviate the interference problem.

The detailed algorithm is demonstrated in Algorithm 1. It
contains two loops.The two inner loops are used to solve
Equations (5) and (19) independently with an iterative
solver. Figs. 9a and 9b demonstrate the convergence rates of
two commonly used iterative solvers, including both the
Jacobi method and the conjugate gradient method. We can
notice faster convergence rate of the conjugate gradient
compared to the Jacobi method in solving both fluid incom-
pressibility and viscosity. The outer loop is also taken itera-
tively, with a purpose to diminish the interference between
pressure and viscosity.

Fig. 12 demonstrates an intuitive comparison on the
effect of increasing the global iteration number, where the
iteration number is increased from 1 to 16. As the global
iteration number increases, we can notice a better property
of shape preserving without losing viscous behaviors.

To demonstrate whether our method converges to a
global solution, Fig. 13a plots the convergence curves of rel-
ative errors for both the incompressibility and viscosity
solvers. Note the pressure and velocity fields are largely
affected between each other at the beginning of the global
iteration. However, as we take more global iterations, rela-
tive errors for both fields are gradually removed. In other
words, the interference between pressure and viscosity can
be alleviated with our method. Further experiments show
that the global convergence rate mostly depends on the vis-
cosity coefficient, as demonstrated in Fig. 13b. Both the time
step size and the particle sampling distance only have a
minor effect on the global convergence rate, as illustrated in
Fig. 14. Unfortunately, if we use DFSPH [12] to solve fluid
incompressibility, the algorithm fails to converge to a global
solution, as shown in Fig. 13c. That is to say, the idea of cou-
pling an arbitrary incompressibility and a viscosity solver
may not be a serious solution to simulate viscous incom-
pressible fluids.

To further evaluate the dependence of viscous behaviors
on the SIMPLE iteration number, Fig. 15 demonstrates four
materials with different viscosities. As the iteration number
is increased, it can be noted that patterns of all four

Fig. 6. A fluid with a viscosity of m ¼ 500Pa � s is simulated to demon-
strate the interference between pressure and shear forces. (a) Remark-
able viscous behaviors, such as rope coiling, are missing when
incompressibility is solved after viscosity; (b) Severe volume loss is
noticeable at the bottom when viscosity is solved after incompressibility.
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materials tend to be stable. In other words, if a sufficient
iteration number is taken, real physical behaviors for all vis-
cous fluids should be reached. However, in the practical
implementation, we suggest to only take a small fixed num-
ber of iterations for efficiency. According to the comparison,
10 iterations will be enough to achieve desirable visual
effects for most cases. However, for fluids with a high vis-
cosity, e.g., m > 104Pa � s, more than 10 iterations can better
preserve the shapes.

5 RESULTS AND DISCUSSIONS

In this section, we simulate various fluids, including both
Newtonian and non-Newtonian ones. All implementations
were performed on an Intel CPU (I7-8700K 3.70GHz) with
time-consuming parts (neighbor-list searching, incompressi-
bility solver, viscosity solver and velocity updating, etc.) par-
allelized on an NVIDIA GPU (Geforce RTX2080). Surface

tension is based on the method of He et al. [42]. Surface
meshes are reconstructed with the method of Bhattacharya
et al. [49]. To simplify solid-fluid interactions, signed distance
field is applied to impose a no-slip solidwall boundary condi-
tion, i.e., no relative displacements occur between the signed
distance field and the particles on its surface. Time step size is
fixed or restricted by the CFL condition [15]. Table 1 summa-
rizes the statistics and timings of our examples.

Comparison to Other Methods. Fig. 7 shows a comparison
of the buckling effect between our method and state-of-the-
art method [7]. We can notice that when only taking one
global iteration, the surface details of both fluids can be
quickly blurred. Then, as the global iteration number
increases, significant improvement on preserving surface
details can be found with our method. However, if we solve
incompressibility with DFSPH and viscosity with an
implicit viscosity (IV) solver multiple times, a side effect can
be observed. The material becomes stiffer with more global

Fig. 9. Sub-iterative convergence analysis for the rope coiling example.
(a) Convergence rates of the incompressibility solver; (b) Convergence
rates of the viscosity solver.

Fig. 10. The semi-analytical ghost particles. (a) An interior particle whose
support domain is not clumped by boundary; (b) A boundary particlewhose
support domain intersects with the boundary; (c) A boundary particle with
both ghost-air particles and liquid particles in its neighborhood.

Fig. 11. A dambreak case consisting of 20k particles with a sampling
distance of 0.005m. The support radius is set to 0:0125m. We can notice
consistent behaviors of simulations that are taken under four different
time steps.

Fig. 7. Comparison of the buckling effect between our approach and state-of-the-art method [7] with different number of global iterations. DFSPH-IV
means we use DFSPH [12] to solve incompressibility and the implicit method [7] to solve viscosity. For DFSPH-IV, the numbers and depths of the
”wrinkles” of buckling effects change with increasing iterations, which shows that its physical viscosity changes drastically with global iterations [40],
due to the divergence.

Fig. 8. Comparison of rope coiling effect. (a) Peer et al. [6]; (b) Peer et al. [13];
(c) Weiler et al. [7] with 1 iteration; (d) Weiler et al. [7] with 5 iterations;(e) Our
methodwith 1 iteration; (f)Our methodwith 5 iterations.
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iterations (please count the wrinkle number). It indicates the
combination of DFSPH and the viscosity solver does not
converge to a global solution. The cause of this problem is
that if incompressibility and viscosity solvers are not linked
properly (as discussion in Section 3), the final solution could
deviate from the global solution. In contrast, our method
does not suffer from this problem due to the linkage
between pressure and shear forces.

Since earlier works [6], [13] have also been denoted to
remove the interference between pressure and viscosity, we
provide a more thorough comparison in Fig. 8. As shown in
Figs. 8a and 8b, both the methods of Peer et al. 2015 [6] and
Peer et al. 2016 [13] fail to capture the coiling effect cor-
rectly. This problem is caused by the missing of rotational
motion due to the damping introduced by their reconstruc-
tion of the velocity field [7]. With Weiler et al. [7]’s method,
the correct rope coiling effect is visible in Fig. 8c. However,
if we want to enrich surface details by taking 5 SIMPLE iter-
ations, Fig. 8d shows the correct coiling effect is damaged.
In other words, the DFSPH+IV strategy does not guarantee
the convergence under multiple SIMPLE iterations. In con-
trast, Figs. 8e and 8f show that our method guarantees a
consistent behavior with more surface details when more
iterations are taken.

Newtonian Fluids. A Newtonian fluid is a fluid whose vis-
cous stress is linearly proportional to the local strain rate,
i.e., m is a constant. To show that our method is stable at
simulating Newtonian fluids with any viscosity, we drop a
bunny of liquid with three different viscosities on a bar, as
shown in Fig. 1. The corresponding viscosity coefficients are

set to 0Pa � s, 300Pa � s and an extremely high value of 5�
107Pa � s, respectively. Note for the non-viscous fluid, only
one outer loop iteration is needed because no viscous forces
exist to violate fluid incompressibility.

Non-Newtonian Fluids. In non-Newtonian fluids, viscosity
can change with varying shear rates. We implement the
commonly used Cross model [50] to simulate non-Newto-
nian fluids. Its dynamic viscosity is defined as the following
nonlinear function

m ¼ m1 þ
m0 � m1
1þ ðk _gÞn ; (22)

Fig. 12. Rope coiling effect for a fluid with a viscosity of m ¼ 5000Pa � s. By taking more iterations for the outer loop, our method is able to preserve
more sharp surface details without losing viscous behaviors. The radiuses of the rope coiling effects are almost the same, which means that the phys-
ical viscosities do not change with the iteration number [45].

Fig. 13. Evaluation of the global convergence rate. (a) In simulating an incompressible fluid with a viscosity of m ¼ 5000Pa � s, our method shows that
the relative errors of both the viscosity and incompressibility solvers converge to zero synchronously as the number of global iteration increases.
(b) Comparison of the convergence rates of our method in simulating fluids with different viscosity coefficients, note the global convergence rate
depends mostly on the viscosity coefficient. (c) Instead, if we use DFSPH to solve fluid incompressibility, the algorithm fails to converge to a global
solution. In all above tests, the thresholds for both the viscous and incompressible solvers are set to 10�5.

Fig. 14. Evaluation of the influence of the time step size (dt) and particle
sampling distance (dx) on the global convergence rate for the rope
coiling example (m ¼ 5000Pa � s, �v0 ¼ 10�5, �p0 ¼ 10�5). (a) Global
convergence rates of the incompressibility solver with different time step
sizes; (b) Global convergence rates of the incompressibility solver with
different particle sampling distances.
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Fig. 15. Evaluation of the dependence of viscous behaviors on the SIMPLE iteration number. The figure shows a snapshot of the viscous fluids
2.5 seconds after they first hit the ground. In this scenario, each fluid block consists of 8k particles and the corresponding SIMPLE iteration number
is displayed on the board. A free-slip boundary condition is imposed on the ground. The surface tension is neglected to make surface details more
obvious. Stable fluid patterns are reached as the iteration number is increased.

TABLE 1
Statistics and Timings per Timestep of Our Examples

Name total particles mðPa � sÞ surface tension dt[ms] itermax tp[ms] tv[ms] ttotal[s]

Fig. 1a 36k 0 0 1.0 1 5.5 0 3:2� 10�2

Fig. 1b 36k 300 0 1.0 2 5.5 4.4 5:1� 10�2

Fig. 1c 36k 5� 107 0 1.0 2 5.5 13.1 7:0� 10�2

Fig. 2 48k dynamic 0 2.0�3.0(CFL) 5 6.3 9.1 0.15

Fig. 3 136k 3, 100, 5� 105 0 1.0 2 31 49 0.27

Fig. 4 462k 400 0.002 1.4�2.2(CFL) 2 65 135 1.6

Fig. 7d 36k 5000 0 1.0 1 5.3 8.2 6:1� 10�2

Fig. 7e 36k 5000 0 1.0 5 5.3 8.2 0.11

Fig. 7f 36k 5000 0 1.0 10 5.3 8.2 0.18

Fig. 8e 5k 5000 0 1.0 1 1.0 1.7 1:1� 10�2

Fig. 8f 5k 5000 0 1.0 5 1.0 1.7 2:0� 10�2

Fig. 12a 22k 5000 0.0005 1.0 1 4.1 5.2 3:6� 10�2

Fig. 12b 22k 5000 0.0005 1.0 2 4.1 5.2 4:5� 10�2

Fig. 12c 22k 5000 0.0005 1.0 4 4.1 5.2 6:4� 10�2

Fig. 12d 22k 5000 0.0005 1.0 8 4.1 5.2 0.11

Fig. 12e 22k 5000 0.0005 1.0 16 4.1 5.2 0.19

Fig. 16(left) 104k 5� 106 0 1.0 1 16 37 0.13

Fig. 16(right) 104k 5� 106 0 1.0 5 16 37 0.34

Fig. 17a 1068k 200, 300, 5� 104, 5� 105 0, 0.0005 1.0 5 90 203 2.4

Fig. 17b 54k 5� 107 0 1.0 5 7.1 10.2 0.15

Fig. 18 975k 5� 104 0 1.2�1.9(CFL) 4 82 171 1.9

Fig. 19 103k dynamic 0 1.0 2 17 41 0.38

itermax represents the number of SIMPLE iteration, tp represents the average computational cost for solving Equation (7), tv represents the average computa-
tional cost for solving Equation (5), ttotal represents the average computational cost per time step.
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where m0 and m1 are two limiting values of viscosity at very
low and high shear rates, k controls the shear rate and n con-
trols the smoothness of transition, _g is the shear rate defined as

_g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � traceðDÞ2

q
; D ¼ rvþrvT : (23)

To guarantee momentum conservation, the viscosity term
for non-Newtonian fluids should be corrected as follows:

mr2v0 ¼ 2ðdþ 2Þ
X
jl

Vjl
mi þ mjl

2

v0
ijl
� rijl

rijl
���

���2 þ h2
rWijl :

(24)

Fig. 2 shows both shear thinning (m0 ¼ 50Pa � s;m1 ¼
5� 105Pa � s; n ¼ �6; k ¼ 10) and shear thickening (m0 ¼
50Pa � s;m1 ¼ 5� 105Pa � s; n ¼ 6; k ¼ 1) behaviors simu-
lated with the Cross viscosity model.

For comparison, a low viscosity as well as a high viscosity
Newtonian fluid are also demonstrated. In this example, the
two non-Newtonian fluids show dramatic change of the vis-
cosity during their impact. The shear thickening fluid seems
to be quickly hardened during the impact due to the
increased viscosity and then softened gradually as the defor-
mation slows down. In contrast, the shear thinning fluid
crumbles as a result of material softening during the impact.

To further demonstrate the distinctive behaviors between
Newtonian and non-Newtonian fluids, we setup another
experiment for comparison, i.e., by dropping rigid objects

into Newtonian fluids and non-Newtonian fluids respec-
tively, as shown in Fig. 19. Both the low viscosity Newto-
nian fluid and shear thickening fluid are simulated with an
initial viscosity of m ¼ 5Pa � s. However, as the cube touches
the liquid surface, the rapid change of deformation in the
shear thickening fluid helps to increase shear forces, there-
fore slows the motion of the cube quickly. In contrast, when
the simulation of a high viscosity Newtonian fluid and a
shear-thickening fluid are started with an initial viscosity of
m ¼ 5� 105Pa � s, the shear thinning fluid softens as the
cube touch the liquid surface due to the rapid change of
deformation. Note that for a shear thinning fluid, the value
of _g could occasionally be 0. To avoid being divided by
zero, we simply neglect the last term of Equation (22) when
_g is smaller than a predefined threshold.

Cream on Cookies. To demonstrate the effectiveness of our
method in removing the interference between pressure and
shear forces, Fig. 16 demonstrates a comparison of two simu-
lations where on the left only one SIMPLE iteration is taken
to simulate the creamwhile 5 iterations are taken on the right.
According to the comparison, we can notice more surface
details with more iterations. Besides, taking more iterations
also helps preserve the final shape for a longer time.

More Demonstrations. In Fig. 3, three bunnies with differ-
ent viscosities are dropped onto a table. Different viscous
behaviors as well as interactions between them can be
noticed. In Fig. 18, five armadillos are dropped sequentially
onto the ground. This example shows that our method pre-
serves shapes and surface details well for a high viscosity
fluid (m ¼ 5� 104Pa � s). Fig. 4 shows an armadillo consist-
ing of 462k particles dropped onto a bench. By including

Fig. 16. Creams on cookies. Compared to a one-iteration strategy on the
left, we can notice more surface details on the right when five SIMPLE
iterations are taken.

Fig. 17. Desserts and ice-cream. (a) Desserts. Creams with four differ-
ent viscosities (maple cream: m ¼ 300Pa � s; chocolate cream and straw-
berry jam:m ¼ 200Pa � s; faint yellow cream: m ¼ 5� 104Pa � s; white
cream: m ¼ 5� 105Pa � s ) are simulated. (b) Ice-cream. Our method
captures the rope coiling effect of the ice-cream without losing surface
details when the interference between pressure and shear forces is
alleviated.

Fig. 18. Five armdillos falling onto the ground. This example shows that
our method preserves shapes and surface details well for a large scale
simulation of a high viscosity fluid.

Fig. 19. Rigid objects dropped into Newtonian and non-Newtonian flu-
ids. (a) A low viscosity Newtonian fluid with m ¼ 5Pa � s; (b) A shear
thickening fluid with m0 ¼ 5Pa � s;m1 ¼ 5� 105Pa � s; n ¼ 6 and k ¼ 1;
(c) A high viscosity Newtonian fluid with m ¼ 5� 105Pa � s; (d) A shear
thinning fluid with m0 ¼ 5Pa � s;m1 ¼ 5� 105Pa � s; n ¼ �10 and k ¼ 50.
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surface tension forces [42], our method is able to reproduce
remarkable viscous behaviors, such as rope coiling and
buckling, as well as other realistic small-scale thin features,
such as filaments and sheets. In Fig. 17b, a real scenario of
making ice cream is simulated to demonstrate the rope coil-
ing effect (m ¼ 5� 104Pa � s). Due to our SIMPLE method,
the ice cream is able to preserve the shape well. In Fig. 17a,
four different Newtonian fluids were simulated by our
method. The maple cream on the triangle cake is simulated
with a viscosity of 300Pa � s and the chocolate cream with
m ¼ 200Pa � s. The faint yellow cream (m ¼ 5� 104Pa � s, 5
SIMPLE iterations ) is dropped onto a square cake to dem-
onstrate the buckling effect. The white cream (m ¼ 5�
105Pa � s, 5 SIMPLE iterations) dropped onto the round cake
demonstrates the rope coiling effect.

Limitations. The major limitation of our method is the
high computational overhead because the total computation
cost is linearly proportional to iteration number of the outer
loop. Besides, the convergence rate to a global solution
depends on the viscosity coefficient. However, in most
cases, a small fixed number of SIMPLE iterations will be
enough to achieve desirable visual effects. Another strategy
to improve the performance is to decrease the iteration
number of inner loops. This works because the incompressi-
bility and viscosity solvers actually deteriorate the accuracy
between each other. The final limitation is that the discre-
tized pressure gradient in Equation (13) does not strictly
conserve the total linear momentum. However, during our
tests, no apparent visual artifacts have been observed.

6 CONCLUSION

In this paper, we presented a SIMPLE algorithm adapted for
SPH in simulating viscous incompressible fluids. The main
purpose is to alleviate the interference between pressure and
shear forces, especially for highly viscous incompressible flu-
ids. We have demonstrated a variety of different examples to
show the effectiveness of our method in alleviating the inter-
ference artifact. Our method is able to model remarkable vis-
cous behaviors, such as coiling and buckling, with a good
property of preserving sharp surface details. Besides, our
method is stable at simulating incompressible Newtonian
and non-Newtonian fluids with any given viscosity.

For our furtherwork,wewill first consider how to improve
the performance. Besides, we will consider extending our
method to simulate more kinds of viscous incompressible flu-
ids, especially for those with thin features. Finally, we will
investigate how to alleviate the interference between visco-
elasticity and incompressibility for viscoelastic incompress-
ible fluids.
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